Python编程中实现迭代器的一些技巧小结
yield实现迭代器
如引言中的描述,实现一个可迭代的功能要是每次都手动实现iter,next稍稍有点麻烦,所需的代码也是比较客观。在python中也能通过借助yield的方式来实现一个迭代器。yield有一个关键的作能,它能够中断当前的执行逻辑,保持住现场(各种值的状态,执行的位置等等),返回相应的值,下一次执行的时候能够无缝的接着上次的地方继续执行,如此循环反复知道满足事先设置的退出条件或者发生错误强制被中断。
其具体功能是可以当return使用,从函数里返回一个值,不同之处是用yield返回之后,可以让函数从上回yield返回的地点继续执行。也就是说,yield返回函数,交给调用者一个返回值,然后再“瞬移”回去,让函数继续运行, 直到吓一跳yield语句再返回一个新的值。使用yield返回后,调用者实际得到的是一个迭代器对象,迭代器的值就是返回值,而调用该迭代器的next()方法会导致该函数恢复yield语句的执行环境继续往下跑,直到遇到下一个yield为止,如果遇不到yield,就会抛出异常表示迭代结束。
看一个例子:
>>> def test_yield(): ... yield 1 ... yield 2 ... yield (1,2) ... >>> a = test_yield() >>> a.next() 1 >>> a.next() 2 >>> a.next() (1, 2) >>> a.next() Traceback (most recent call last): File "<stdin>", line 1, in ? StopIteration
光听描述就觉得和迭代器的工作方式很一致是吧,的确,yield能把它所在的函索变成一个迭代器,拿最经典的菲波那切数列的例子聊简述一下工作的方式:
def fab(max): n, a, b = 0, 0, 1 while n < max: print b, "is generated" yield b a, b = b, a + b n = n + 1 >>> for item in fab(5): ... print item ... 1 is generated 1 1 is generated 1 2 is generated 2 3 is generated 3 5 is generated 5
我们有回想一下for关键字的语法糖,在这里遍历5以内的菲波那切数列值的时候,很显然fab(5)生成了一个可迭代的对象,遍历开始的时候它的iter方法被调用返回一个实际工作的迭代器对象,然后每一次调用它的next方法返回一个菲波那切数列值然后打印出来。
我们可以将调用生成器函数返回的对象的属性打印出来,看一下到底发生了什么:
>>> temp_gen = fab(5) >>> dir(temp_gen) ['__class__', '__delattr__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__iter__', '__name__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'close', 'gi_code', 'gi_frame', 'gi_running', 'next', 'send', 'throw']
正如上面的描述,单纯调用fab并不会让函数立刻开始返回任何值,并且从打印出的fab(5)的属性列表能够看到,生成器函数返回的对象包含有__iter__,next的实现。与我们手动实现相比,使用yield很方便的就能够实现我们想要的功能,代码量缩减不少。
Generator Expression
python中另一种能更优雅生成迭代器对象的方式就是使用生成器表达式Generator expression,它和列表解析表达式有着非常相似的写法,仅仅是把中括号[]变成()而已,不过小小改变产生的实际效果确实大大的不一样:
>>> temp_gen = (x for x in range(5)) >>> temp_gen <generator object <genexpr> at 0x7192d8> >>> for item in temp_gen: ... print item ... 0 1 2 3 4 >>> dir(temp_gen) ['__class__', '__delattr__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__iter__', '__name__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'close', 'gi_code', 'gi_frame', 'gi_running', 'next', 'send', 'throw']
看过上面对yield的描述,这个例子以及对应的输出日志还是相当直接明了的,无论是temp_gen的打印日志描述,for语句遍历的输出结果还是调用dir输出的属性列表,都赤裸裸的表明生成器表达式确实生成了能够支持迭代的对象。另外表达式里面也能够调用函数,增加适量的过滤条件。
内置库itertools 和 iter
python内置的库itertools提供了大量的工具方法,这些方法能够帮助我们创建能进行高效遍历和迭代的对象,里面包含不少有意思并且有用的方法,比如像chain, izip/izip_longest, combinations, ifilter等等。在python中还有一个内置的iter函数非常有用,能够返回一个迭代器对象,之后也就能够进行可以查看对应的帮助文档简单看一下:
>>> iter('abc') <iterator object at 0x718590> >>> str_iterator = iter('abc') >>> next(str_iterator) 'a' >>> next(str_iterator) 'b' >>> lst_gen = iter([1,2,3,4]) >>> lst_gen <listiterator object at 0x728e30> >>> dir(lst_gen) ['__class__', '__delattr__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__iter__', '__length_hint__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'next'] >>> help(iter) Help on built-in function iter in module builtins: iter(...) iter(iterable) -> iterator iter(callable, sentinel) -> iterator Get an iterator from an object. In the first form, the argument must supply its own iterator, or be a sequence. In the second form, the callable is called until it returns the sentinel.

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



PS "Memuatkan" Masalah disebabkan oleh akses sumber atau masalah pemprosesan: Kelajuan bacaan cakera keras adalah perlahan atau buruk: Gunakan CrystaldiskInfo untuk memeriksa kesihatan cakera keras dan menggantikan cakera keras yang bermasalah. Memori yang tidak mencukupi: Meningkatkan memori untuk memenuhi keperluan PS untuk imej resolusi tinggi dan pemprosesan lapisan kompleks. Pemandu kad grafik sudah lapuk atau rosak: Kemas kini pemandu untuk mengoptimumkan komunikasi antara PS dan kad grafik. Laluan fail terlalu panjang atau nama fail mempunyai aksara khas: Gunakan laluan pendek dan elakkan aksara khas. Masalah PS sendiri: Pasang semula atau membaiki pemasang PS.

PS yang tersangkut pada "memuatkan" apabila boot boleh disebabkan oleh pelbagai sebab: Lumpuhkan plugin yang korup atau bercanggah. Padam atau namakan semula fail konfigurasi yang rosak. Tutup program yang tidak perlu atau menaik taraf memori untuk mengelakkan memori yang tidak mencukupi. Naik taraf ke pemacu keadaan pepejal untuk mempercepatkan bacaan cakera keras. Pasang semula PS untuk membaiki fail sistem rasuah atau isu pakej pemasangan. Lihat maklumat ralat semasa proses permulaan analisis log ralat.

"Memuatkan" gagap berlaku apabila membuka fail pada PS. Sebab-sebabnya mungkin termasuk: fail yang terlalu besar atau rosak, memori yang tidak mencukupi, kelajuan cakera keras perlahan, masalah pemacu kad grafik, versi PS atau konflik plug-in. Penyelesaiannya ialah: Semak saiz fail dan integriti, tingkatkan memori, menaik taraf cakera keras, mengemas kini pemacu kad grafik, menyahpasang atau melumpuhkan pemalam yang mencurigakan, dan memasang semula PS. Masalah ini dapat diselesaikan dengan berkesan dengan memeriksa secara beransur -ansur dan memanfaatkan tetapan prestasi PS yang baik dan membangunkan tabiat pengurusan fail yang baik.

Artikel ini memperkenalkan operasi pangkalan data MySQL. Pertama, anda perlu memasang klien MySQL, seperti MySqlworkbench atau Command Line Client. 1. Gunakan perintah MySQL-Uroot-P untuk menyambung ke pelayan dan log masuk dengan kata laluan akaun root; 2. Gunakan CreateTatabase untuk membuat pangkalan data, dan gunakan Pilih pangkalan data; 3. Gunakan createtable untuk membuat jadual, menentukan medan dan jenis data; 4. Gunakan InsertInto untuk memasukkan data, data pertanyaan, kemas kini data dengan kemas kini, dan padam data dengan padam. Hanya dengan menguasai langkah -langkah ini, belajar menangani masalah biasa dan mengoptimumkan prestasi pangkalan data anda boleh menggunakan MySQL dengan cekap.

Kunci kawalan bulu adalah memahami sifatnya secara beransur -ansur. PS sendiri tidak menyediakan pilihan untuk mengawal lengkung kecerunan secara langsung, tetapi anda boleh melaraskan radius dan kelembutan kecerunan dengan pelbagai bulu, topeng yang sepadan, dan pilihan halus untuk mencapai kesan peralihan semula jadi.

MySQL mempunyai versi komuniti percuma dan versi perusahaan berbayar. Versi komuniti boleh digunakan dan diubahsuai secara percuma, tetapi sokongannya terhad dan sesuai untuk aplikasi dengan keperluan kestabilan yang rendah dan keupayaan teknikal yang kuat. Edisi Enterprise menyediakan sokongan komersil yang komprehensif untuk aplikasi yang memerlukan pangkalan data yang stabil, boleh dipercayai, berprestasi tinggi dan bersedia membayar sokongan. Faktor yang dipertimbangkan apabila memilih versi termasuk kritikal aplikasi, belanjawan, dan kemahiran teknikal. Tidak ada pilihan yang sempurna, hanya pilihan yang paling sesuai, dan anda perlu memilih dengan teliti mengikut keadaan tertentu.

Pengoptimuman prestasi MySQL perlu bermula dari tiga aspek: konfigurasi pemasangan, pengindeksan dan pengoptimuman pertanyaan, pemantauan dan penalaan. 1. Selepas pemasangan, anda perlu menyesuaikan fail my.cnf mengikut konfigurasi pelayan, seperti parameter innodb_buffer_pool_size, dan tutup query_cache_size; 2. Buat indeks yang sesuai untuk mengelakkan indeks yang berlebihan, dan mengoptimumkan pernyataan pertanyaan, seperti menggunakan perintah menjelaskan untuk menganalisis pelan pelaksanaan; 3. Gunakan alat pemantauan MySQL sendiri (ShowProcessList, ShowStatus) untuk memantau kesihatan pangkalan data, dan kerap membuat semula dan mengatur pangkalan data. Hanya dengan terus mengoptimumkan langkah -langkah ini, prestasi pangkalan data MySQL diperbaiki.

Antara muka pemuatan kad PS mungkin disebabkan oleh perisian itu sendiri (fail rasuah atau konflik plug-in), persekitaran sistem (pemacu yang wajar atau fail sistem rasuah), atau perkakasan (rasuah cakera keras atau kegagalan tongkat memori). Pertama semak sama ada sumber komputer mencukupi, tutup program latar belakang dan lepaskan memori dan sumber CPU. Betulkan pemasangan PS atau periksa isu keserasian untuk pemalam. Mengemas kini atau menewaskan versi PS. Semak pemacu kad grafik dan kemas kini, dan jalankan semak fail sistem. Jika anda menyelesaikan masalah di atas, anda boleh mencuba pengesanan cakera keras dan ujian memori.
