Rumah pembangunan bahagian belakang tutorial php PHP5 面向对象程序设计_PHP教程

PHP5 面向对象程序设计_PHP教程

Jul 21, 2016 pm 03:53 PM
php5 boleh objek Model daripada Pengaturcaraan mewarisi akses Lebihan beban had Untuk

PHP5有一个单重继承的,限制访问的,可以重载的对象模型. 本章稍后会详细讨论的”继承”,包含类间的父-子关系. 另外,PHP支持对属性和方法的限制性访问. 你可以声明成员为private,不允许外部类访问. 最后,PHP允许一个子类从它的父类中重载成员.

PHP5的对象模型把对象看成与任何其它数据类型不同,通过引用来传递. PHP不要求你通过引用(reference)显性传递和返回对象. 在本章的最后将会详细阐述基于引用的对象模型. 它是PHP5中最重要的新特性.

有了更直接的对象模型,就拥有了附加的优势: 效率提高, 占用内存少,并且具有更大的灵活性.

在PHP的前几个版本中,脚本默认复制对象.现在PHP5只移动句柄,需要更少的时间. 脚本执行效率的提升是由于避免了不必要的复制. 在对象体系带来复杂性的同时,也带来了执行效率上的收益. 同时,减少复制意味着占用更少的内存,可以留出更多内存给其它操作,这也使效率提高.

Zand引擎2具有更大的灵活性. 一个令人高兴的发展是允许析构--在对象销毁之前执行一个类方法. 这对于利用内存也很有好处,让PHP清楚地知道什么时候没有对象的引用,把空出的内存分配到其它用途. 

补充:

PHP5的内存管理

对象传递

 

PHP5使用了Zend引擎II,对象被储存于独立的结构Object Store中,而不像其它一般变量那样储存于Zval中(在PHP4中对象和一般变量一样存储于Zval)。在Zval中仅存储对象的指针而不是内容(value)。当我们复制一个对象或者将一个对象当作参数传递给一个函数时,我们不需要复制数据。仅仅保持相同的对象指针并由另一个zval通知现在这个特定的对象指向的Object Store。由于对象本身位于Object Store,我们对它所作的任何改变将影响到所有持有该对象指针的zval结构----表现在程序中就是目标对象的任何改变都会影响到源对象。.这使PHP对象看起来就像总是通过引用(reference)来传递,因此PHP中对象默认为通过“引用”传递,你不再需要像在PHP4中那样使用&来声明。

 

垃圾回收机制

某些语言,最典型的如C,需要你显式地要求分配内存当你创建数据结构。一旦你分配到内存,就可以在变量中存储信息。同时你也需要在结束使用变量时释放内存,这使机器可以空出内存给其它变量,避免耗光内存。

PHP可以自动进行内存管理,清除不再需要的对象。PHP使用了引用计数(reference counting)这种单纯的垃圾回收(garbage collection)机制。每个对象都内含一个引用计数器,每个reference连接到对象,计数器加1。当reference离开生存空间或被设为NULL,计数器减1。当某个对象的引用计数器为零时,PHP知道你将不再需要使用这个对象,释放其所占的内存空间。

例如:

复制代码 代码如下:

class Person{  
}  
function sendEmailTo(){  
}  

$haohappy = new Person( );    
// 建立一个新对象:  引用计数    Reference count = 1  
$haohappy2 = $haohappy;        
// 通过引用复制:  Reference count = 2  
unset($haohappy);            
// 删除一个引用: Reference count = 1  
sendEmailTo($haohappy2);       
// 通过引用传递对象:    
// 在函数执行期间:  
//  Reference count = 2  
// 执行结束后:  
// Reference count = 1  

unset($haohappy2);            
// 删除引用: Reference count = 0 自动释放内存空间  

?> 

www.bkjia.comtruehttp://www.bkjia.com/PHPjc/318700.htmlTechArticlePHP5有一个单重继承的,限制访问的,可以重载的对象模型.本章稍后会详细讨论的”继承”,包含类间的父-子关系.另外,PHP支持对属性和方法的限...
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Arahan sembang dan cara menggunakannya
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Model MoE sumber terbuka paling berkuasa di dunia ada di sini, dengan keupayaan bahasa Cina setanding dengan GPT-4, dan harganya hanya hampir satu peratus daripada GPT-4-Turbo Model MoE sumber terbuka paling berkuasa di dunia ada di sini, dengan keupayaan bahasa Cina setanding dengan GPT-4, dan harganya hanya hampir satu peratus daripada GPT-4-Turbo May 07, 2024 pm 04:13 PM

Bayangkan model kecerdasan buatan yang bukan sahaja mempunyai keupayaan untuk mengatasi pengkomputeran tradisional, tetapi juga mencapai prestasi yang lebih cekap pada kos yang lebih rendah. Ini bukan fiksyen sains, DeepSeek-V2[1], model MoE sumber terbuka paling berkuasa di dunia ada di sini. DeepSeek-V2 ialah gabungan model bahasa pakar (MoE) yang berkuasa dengan ciri-ciri latihan ekonomi dan inferens yang cekap. Ia terdiri daripada 236B parameter, 21B daripadanya digunakan untuk mengaktifkan setiap penanda. Berbanding dengan DeepSeek67B, DeepSeek-V2 mempunyai prestasi yang lebih kukuh, sambil menjimatkan 42.5% kos latihan, mengurangkan cache KV sebanyak 93.3% dan meningkatkan daya pemprosesan penjanaan maksimum kepada 5.76 kali. DeepSeek ialah sebuah syarikat yang meneroka kecerdasan buatan am

KAN, yang menggantikan MLP, telah diperluaskan kepada konvolusi oleh projek sumber terbuka KAN, yang menggantikan MLP, telah diperluaskan kepada konvolusi oleh projek sumber terbuka Jun 01, 2024 pm 10:03 PM

Awal bulan ini, penyelidik dari MIT dan institusi lain mencadangkan alternatif yang sangat menjanjikan kepada MLP - KAN. KAN mengatasi MLP dari segi ketepatan dan kebolehtafsiran. Dan ia boleh mengatasi prestasi MLP berjalan dengan bilangan parameter yang lebih besar dengan bilangan parameter yang sangat kecil. Sebagai contoh, penulis menyatakan bahawa mereka menggunakan KAN untuk menghasilkan semula keputusan DeepMind dengan rangkaian yang lebih kecil dan tahap automasi yang lebih tinggi. Khususnya, MLP DeepMind mempunyai kira-kira 300,000 parameter, manakala KAN hanya mempunyai kira-kira 200 parameter. KAN mempunyai asas matematik yang kukuh seperti MLP berdasarkan teorem penghampiran universal, manakala KAN berdasarkan teorem perwakilan Kolmogorov-Arnold. Seperti yang ditunjukkan dalam rajah di bawah, KAN telah

Penjelasan terperinci tentang warisan fungsi C++: Bagaimana untuk menggunakan 'penunjuk kelas asas' dan 'penunjuk kelas terbitan' dalam warisan? Penjelasan terperinci tentang warisan fungsi C++: Bagaimana untuk menggunakan 'penunjuk kelas asas' dan 'penunjuk kelas terbitan' dalam warisan? May 01, 2024 pm 10:27 PM

Dalam pewarisan fungsi, gunakan "penunjuk kelas asas" dan "penunjuk kelas terbitan" untuk memahami mekanisme pewarisan: apabila penuding kelas asas menghala ke objek kelas terbitan, transformasi ke atas dilakukan dan hanya ahli kelas asas diakses. Apabila penuding kelas terbitan menghala ke objek kelas asas, hantaran ke bawah dilakukan (tidak selamat) dan mesti digunakan dengan berhati-hati.

Robot Tesla bekerja di kilang, Musk: Tahap kebebasan tangan akan mencapai 22 tahun ini! Robot Tesla bekerja di kilang, Musk: Tahap kebebasan tangan akan mencapai 22 tahun ini! May 06, 2024 pm 04:13 PM

Video terbaru robot Tesla Optimus dikeluarkan, dan ia sudah boleh berfungsi di kilang. Pada kelajuan biasa, ia mengisih bateri (bateri 4680 Tesla) seperti ini: Pegawai itu juga mengeluarkan rupanya pada kelajuan 20x - pada "stesen kerja" kecil, memilih dan memilih dan memilih: Kali ini ia dikeluarkan Salah satu sorotan video itu ialah Optimus menyelesaikan kerja ini di kilang, sepenuhnya secara autonomi, tanpa campur tangan manusia sepanjang proses. Dan dari perspektif Optimus, ia juga boleh mengambil dan meletakkan bateri yang bengkok, memfokuskan pada pembetulan ralat automatik: Berkenaan tangan Optimus, saintis NVIDIA Jim Fan memberikan penilaian yang tinggi: Tangan Optimus adalah robot lima jari di dunia paling cerdik. Tangannya bukan sahaja boleh disentuh

FisheyeDetNet: algoritma pengesanan sasaran pertama berdasarkan kamera fisheye FisheyeDetNet: algoritma pengesanan sasaran pertama berdasarkan kamera fisheye Apr 26, 2024 am 11:37 AM

Pengesanan objek ialah masalah yang agak matang dalam sistem pemanduan autonomi, antaranya pengesanan pejalan kaki adalah salah satu algoritma terawal untuk digunakan. Penyelidikan yang sangat komprehensif telah dijalankan dalam kebanyakan kertas kerja. Walau bagaimanapun, persepsi jarak menggunakan kamera fisheye untuk pandangan sekeliling agak kurang dikaji. Disebabkan herotan jejari yang besar, perwakilan kotak sempadan standard sukar dilaksanakan dalam kamera fisheye. Untuk mengurangkan perihalan di atas, kami meneroka kotak sempadan lanjutan, elips dan reka bentuk poligon am ke dalam perwakilan kutub/sudut dan mentakrifkan metrik mIOU pembahagian contoh untuk menganalisis perwakilan ini. Model fisheyeDetNet yang dicadangkan dengan bentuk poligon mengatasi model lain dan pada masa yang sama mencapai 49.5% mAP pada set data kamera fisheye Valeo untuk pemanduan autonomi

Satu kad menjalankan Llama 70B lebih pantas daripada dua kad, Microsoft hanya meletakkan FP6 ke dalam A100 | Satu kad menjalankan Llama 70B lebih pantas daripada dua kad, Microsoft hanya meletakkan FP6 ke dalam A100 | Apr 29, 2024 pm 04:55 PM

FP8 dan ketepatan pengiraan titik terapung yang lebih rendah bukan lagi "paten" H100! Lao Huang mahu semua orang menggunakan INT8/INT4, dan pasukan Microsoft DeepSpeed ​​​​memaksa diri mereka menjalankan FP6 pada A100 tanpa sokongan rasmi daripada Nvidia. Keputusan ujian menunjukkan bahawa kaedah baharu TC-FPx FP6 kuantisasi pada A100 adalah hampir atau kadangkala lebih pantas daripada INT4, dan mempunyai ketepatan yang lebih tinggi daripada yang terakhir. Selain itu, terdapat juga sokongan model besar hujung ke hujung, yang telah bersumberkan terbuka dan disepadukan ke dalam rangka kerja inferens pembelajaran mendalam seperti DeepSpeed. Keputusan ini juga mempunyai kesan serta-merta pada mempercepatkan model besar - di bawah rangka kerja ini, menggunakan satu kad untuk menjalankan Llama, daya pemprosesan adalah 2.65 kali lebih tinggi daripada dua kad. satu

Docker melengkapkan penggunaan tempatan model besar sumber terbuka LLama3 dalam masa tiga minit Docker melengkapkan penggunaan tempatan model besar sumber terbuka LLama3 dalam masa tiga minit Apr 26, 2024 am 10:19 AM

Gambaran Keseluruhan LLaMA-3 (LargeLanguageModelMetaAI3) ialah model kecerdasan buatan generatif sumber terbuka berskala besar yang dibangunkan oleh Syarikat Meta. Ia tidak mempunyai perubahan besar dalam struktur model berbanding LLaMA-2 generasi sebelumnya. Model LLaMA-3 dibahagikan kepada versi skala yang berbeza, termasuk kecil, sederhana dan besar, untuk memenuhi keperluan aplikasi dan sumber pengkomputeran yang berbeza. Saiz parameter model kecil ialah 8B, saiz parameter model sederhana ialah 70B, dan saiz parameter model besar mencapai 400B. Walau bagaimanapun, semasa latihan, matlamatnya adalah untuk mencapai kefungsian berbilang modal dan berbilang bahasa, dan hasilnya dijangka setanding dengan GPT4/GPT4V. Pasang OllamaOllama ialah model bahasa besar sumber terbuka (LL

Melebihi DPO secara menyeluruh: Pasukan Chen Danqi mencadangkan pengoptimuman pilihan mudah SimPO, dan turut memperhalusi model sumber terbuka 8B terkuat Melebihi DPO secara menyeluruh: Pasukan Chen Danqi mencadangkan pengoptimuman pilihan mudah SimPO, dan turut memperhalusi model sumber terbuka 8B terkuat Jun 01, 2024 pm 04:41 PM

Untuk menyelaraskan model bahasa besar (LLM) dengan nilai dan niat manusia, adalah penting untuk mempelajari maklum balas manusia untuk memastikan bahawa ia berguna, jujur ​​dan tidak berbahaya. Dari segi penjajaran LLM, kaedah yang berkesan ialah pembelajaran pengukuhan berdasarkan maklum balas manusia (RLHF). Walaupun keputusan kaedah RLHF adalah cemerlang, terdapat beberapa cabaran pengoptimuman yang terlibat. Ini melibatkan latihan model ganjaran dan kemudian mengoptimumkan model dasar untuk memaksimumkan ganjaran tersebut. Baru-baru ini, beberapa penyelidik telah meneroka algoritma luar talian yang lebih mudah, salah satunya ialah pengoptimuman keutamaan langsung (DPO). DPO mempelajari model dasar secara langsung berdasarkan data keutamaan dengan meparameterkan fungsi ganjaran dalam RLHF, sekali gus menghapuskan keperluan untuk model ganjaran yang jelas. Kaedah ini mudah dan stabil

See all articles