内存池的使用給Nginx带来了很多好处,比如内存使用的便利,逻辑代码的简化以及程序性能的提升。
几个关键知识点罗列如下:
(1)函数ngx_palloc()尝试从内存中分配size大小的内存时,分两种情况,一种是size大小小于pool->max,称为小块内存分配,若当前内存池节点小于size,则申请一个新的等同大小的内存池节点,然后从这个新内存池节点分配出size大小的内存空间。若size 大于pool->max时,即分配大块内存,此时调用的函数直接向操作系统申请大块内存。
(2)小块内存的申请是插入在链表的尾节点,而新的大块内存则是插入在链表前面。
(3)Nginx仅提供对大块内存的释放,没有提供对小块内存的释放,意味着从内存池分配出去的内存不会再回收到内存池里来,而只有在销毁整个内存池时,这些内存才会回收到系统内存里。
(4)ngx_pool_t中的current字段:这个字段记录了后序从该内存池分配内存的起始节点,Nginx规定当一个内存节点分配总失败次数大于等于6次时,current则指向下一个内存节点。
(5)为什么要将pool->max字段的最大值限制在一页内存,这也是小块内存与大块内存的临界,原因在于只有当分配的空间小于一页时才有缓存的必要,,否则的话还不如直接利用系统接口malloc()向操作系统申请。
各个结构体的定义:
//大块内存管理结构 struct ngx_pool_large_s { ngx_pool_large_t *next; //连接下一个大内存管理 void *alloc; //申请的大内存地址 }; //内存池中数据管理 typedef struct { u_char *last; //可用内存的起始地址 u_char *end; //可用内存的末尾地址 ngx_pool_t *next; //指向下一个内存池节点 ngx_uint_t failed; //申请时,失败的次数 } ngx_pool_data_t; //内存池 struct ngx_pool_s { ngx_pool_data_t d; //存放数据 size_t max; //存放数据的可用内存大小,最大为1页 ngx_pool_t *current; //指向分配内存的内存池 ngx_chain_t *chain; ngx_pool_large_t *large; //连接大内存管理结构 ngx_pool_cleanup_t *cleanup; //清理对象头 ngx_log_t *log; };
//创建一个size的内存池 ngx_pool_t * ngx_create_pool(size_t size, ngx_log_t *log) { ngx_pool_t *p; p = ngx_memalign(NGX_POOL_ALIGNMENT, size, log); //以对齐的方式来申请size字节内存 if (p == NULL) { return NULL; } p->d.last = (u_char *) p + sizeof(ngx_pool_t); //指向可用的内存起始地址 p->d.end = (u_char *) p + size; //指向可用内存的末尾地址 p->d.next = NULL; //初始时,下一个可用内存为NULL p->d.failed = 0; //该内存申请失败零次 size = size - sizeof(ngx_pool_t); //实际可用的大小,减去控制结构的大小 p->max = (size current = p; //指向正在分配内存的内存池 p->chain = NULL; p->large = NULL; p->cleanup = NULL; p->log = log; return p; }
//销毁内存池 void ngx_destroy_pool(ngx_pool_t *pool) { ngx_pool_t *p, *n; ngx_pool_large_t *l; ngx_pool_cleanup_t *c; //运行清理对象的handler for (c = pool->cleanup; c; c = c->next) { if (c->handler) { ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, pool->log, 0, "run cleanup: %p", c); c->handler(c->data); } } //释放大内存 for (l = pool->large; l; l = l->next) { ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, pool->log, 0, "free: %p", l->alloc); if (l->alloc) { ngx_free(l->alloc); //使用free释放malloc申请的内存 } } #if (NGX_DEBUG) /* * we could allocate the pool->log from this pool * so we cannot use this log while free()ing the pool */ for (p = pool, n = pool->d.next; /* void */; p = n, n = n->d.next) { ngx_log_debug2(NGX_LOG_DEBUG_ALLOC, pool->log, 0, "free: %p, unused: %uz", p, p->d.end - p->d.last); if (n == NULL) { break; } } #endif //释放每一个申请的内存池对象ngx_pool_t for (p = pool, n = pool->d.next; /* void */; p = n, n = n->d.next) { ngx_free(p); if (n == NULL) { break; } } } //重设内存池 void ngx_reset_pool(ngx_pool_t *pool) { ngx_pool_t *p; ngx_pool_large_t *l; //释放大内存 for (l = pool->large; l; l = l->next) { if (l->alloc) { ngx_free(l->alloc); } } //内存池对象,仅仅改变last的指针位置 for (p = pool; p; p = p->d.next) { p->d.last = (u_char *) p + sizeof(ngx_pool_t); //导致所有的内存池对象的可用内存的起始地址偏移都一样 p->d.failed = 0; } pool->current = pool; pool->chain = NULL; pool->large = NULL; }
//分配内存(地址对齐) void * ngx_palloc(ngx_pool_t *pool, size_t size) { u_char *m; ngx_pool_t *p; if (size max) { //小内存申请时,以size为标准 p = pool->current; do { m = ngx_align_ptr(p->d.last, NGX_ALIGNMENT); //首先将d.last地址对齐 if ((size_t) (p->d.end - m) >= size) { //可用的内存大于要申请的内存 p->d.last = m + size; //直接更新d.last return m; //直接返回 } p = p->d.next; //否则找下一个可用的内存池对象 } while (p); //没有找到,则要申请新的内存池对象 return ngx_palloc_block(pool, size); } return ngx_palloc_large(pool, size); //大内存申请处理 } //分配内存(地址可以不对齐) void * ngx_pnalloc(ngx_pool_t *pool, size_t size) { u_char *m; ngx_pool_t *p; if (size max) { //小内存 p = pool->current; do { m = p->d.last; if ((size_t) (p->d.end - m) >= size) { p->d.last = m + size; return m; } p = p->d.next; } while (p); return ngx_palloc_block(pool, size); //申请新内存池对象 } return ngx_palloc_large(pool, size); //大内存 }
//申请新的内存池对象 static void * ngx_palloc_block(ngx_pool_t *pool, size_t size) { u_char *m; size_t psize; ngx_pool_t *p, *new; psize = (size_t) (pool->d.end - (u_char *) pool); //申请内存的总大小 m = ngx_memalign(NGX_POOL_ALIGNMENT, psize, pool->log); //对齐方式申请内存 if (m == NULL) { return NULL; } new = (ngx_pool_t *) m; //新的内存 new->d.end = m + psize; //可用的内存的最后地址 new->d.next = NULL; new->d.failed = 0; m += sizeof(ngx_pool_data_t); //只有一个ngx_pool_data_t,节省了ngx_pool_t的其余开销 m = ngx_align_ptr(m, NGX_ALIGNMENT); new->d.last = m + size; //可用的内存的起始地址 //如果当前申请内存的失败的次数已经有5次了,第6次,current将会指向新的内存池对象 for (p = pool->current; p->d.next; p = p->d.next) { if (p->d.failed++ > 4) { pool->current = p->d.next; } } p->d.next = new; //连接刚刚申请的内存池对象 return m; }
//大内存申请处理 static void * ngx_palloc_large(ngx_pool_t *pool, size_t size) { void *p; ngx_uint_t n; ngx_pool_large_t *large; p = ngx_alloc(size, pool->log); //直接malloc申请内存 if (p == NULL) { return NULL; } n = 0; for (large = pool->large; large; large = large->next) { if (large->alloc == NULL) { //如果有内存被释放了,可重用 large->alloc = p; return p; } if (n++ > 3) { //但是只找4次,第5次直接break,创建大内存的管理结构 break; } } large = ngx_palloc(pool, sizeof(ngx_pool_large_t)); //从内存池对象申请内存 if (large == NULL) { ngx_free(p); return NULL; } large->alloc = p; //指向申请的大内存 //插入large的头 large->next = pool->large; pool->large = large; return p; }
//不管内存大小多大,向操作系统申请内存 void * ngx_pmemalign(ngx_pool_t *pool, size_t size, size_t alignment) { void *p; ngx_pool_large_t *large; p = ngx_memalign(alignment, size, pool->log); //申请的内存 if (p == NULL) { return NULL; } large = ngx_palloc(pool, sizeof(ngx_pool_large_t)); //申请一个大内存管理结构 if (large == NULL) { ngx_free(p); return NULL; } //放入到内存池ngx_pool_t中管理 large->alloc = p; //指向申请的内存 //插入到头部 large->next = pool->large; pool->large = large; return p; }
//释放内存 ngx_int_t ngx_pfree(ngx_pool_t *pool, void *p) { ngx_pool_large_t *l; //只释放大内存 for (l = pool->large; l; l = l->next) { if (p == l->alloc) { ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, pool->log, 0, "free: %p", l->alloc); ngx_free(l->alloc); l->alloc = NULL; //置为空 return NGX_OK; } } return NGX_DECLINED; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
以上就介绍了Nginx高级数据结构源码分析(四)-----内存池,包括了方面的内容,希望对PHP教程有兴趣的朋友有所帮助。