setdefaultencoding函数使用详解
sys.getdefaultencoding()是设置默认的string的编码格式,如果你在python中进行编码和解码的时候,不指定编码方式,那么python就会使用defaultencoding。
而python2.x的的defaultencoding是ascii,这也就是大多数python编码报错:“UnicodeDecodeError: 'ascii' codec can't decode byte ......”的原因。
与此有类似功能的# coding:utf-8 作用是定义源代码的编码. 如果没有定义, 此源码中是不可以包含中文字符串的.
注意:python2.7以后setdefaultencoding就废弃掉了,所以在python3.x中不可使用
代码实例:
#!/usr/bin/env python #encoding: utf-8 import sys #引用sys模块进来,并不是进行sys的第一次加载 reload(sys) #重新加载sys sys.setdefaultencoding('utf8') ##调用setdefaultencoding函数
可以正确的执行,可是下面的代码会出错
#!/usr/bin/env python #encoding: utf-8 import sys sys.setdefaultencoding('utf8')
要在调用setdefaultencoding时必须要先reload一次sys模块,因为这里的import语句其实并不是sys的第一次导入语句,也就是说这里其实可能是第二、三次进行sys模块的import,这里只是一个对sys的引用,只能reload才能进行重新加载。
那么为什么要重新加载,而直接引用过来则不能调用该函数呢?因为setdefaultencoding函数在被系统调用后被删除了,所以通过import引用进来时其实已经没有了,所以必须reload一次sys模块,这样setdefaultencoding才会为可用,才能在代码里修改解释器当前的字符编码。
在python安装目录的Lib文件夹下,有一个叫site.py的文件,在里面可以找到main() --> setencoding()-->sys.setdefaultencoding(encoding),因为这个site.py每次启动python解释器时会自动加载,所以main函数每次都会被执行,setdefaultencoding函数一出来就已经被删除了。

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial ini menunjukkan cara menggunakan Python untuk memproses konsep statistik undang -undang ZIPF dan menunjukkan kecekapan membaca dan menyusun fail teks besar Python semasa memproses undang -undang. Anda mungkin tertanya -tanya apa maksud pengedaran ZIPF istilah. Untuk memahami istilah ini, kita perlu menentukan undang -undang Zipf. Jangan risau, saya akan cuba memudahkan arahan. Undang -undang Zipf Undang -undang Zipf hanya bermaksud: Dalam korpus bahasa semulajadi yang besar, kata -kata yang paling kerap berlaku muncul kira -kira dua kali lebih kerap sebagai kata -kata kerap kedua, tiga kali sebagai kata -kata kerap ketiga, empat kali sebagai kata -kata kerap keempat, dan sebagainya. Mari kita lihat contoh. Jika anda melihat corpus coklat dalam bahasa Inggeris Amerika, anda akan melihat bahawa perkataan yang paling kerap adalah "th

Artikel ini menerangkan cara menggunakan sup yang indah, perpustakaan python, untuk menghuraikan html. Ia memperincikan kaedah biasa seperti mencari (), find_all (), pilih (), dan get_text () untuk pengekstrakan data, pengendalian struktur dan kesilapan HTML yang pelbagai, dan alternatif (sel

Berurusan dengan imej yang bising adalah masalah biasa, terutamanya dengan telefon bimbit atau foto kamera resolusi rendah. Tutorial ini meneroka teknik penapisan imej di Python menggunakan OpenCV untuk menangani isu ini. Penapisan Imej: Alat yang berkuasa Penapis Imej

Fail PDF adalah popular untuk keserasian silang platform mereka, dengan kandungan dan susun atur yang konsisten merentasi sistem operasi, peranti membaca dan perisian. Walau bagaimanapun, tidak seperti Python memproses fail teks biasa, fail PDF adalah fail binari dengan struktur yang lebih kompleks dan mengandungi unsur -unsur seperti fon, warna, dan imej. Mujurlah, tidak sukar untuk memproses fail PDF dengan modul luaran Python. Artikel ini akan menggunakan modul PYPDF2 untuk menunjukkan cara membuka fail PDF, mencetak halaman, dan mengekstrak teks. Untuk penciptaan dan penyuntingan fail PDF, sila rujuk tutorial lain dari saya. Penyediaan Inti terletak pada menggunakan modul luaran PYPDF2. Pertama, pasangkannya menggunakan PIP: Pip adalah p

Tutorial ini menunjukkan cara memanfaatkan caching redis untuk meningkatkan prestasi aplikasi python, khususnya dalam rangka kerja Django. Kami akan merangkumi pemasangan Redis, konfigurasi Django, dan perbandingan prestasi untuk menyerlahkan bene

Artikel ini membandingkan tensorflow dan pytorch untuk pembelajaran mendalam. Ia memperincikan langkah -langkah yang terlibat: penyediaan data, bangunan model, latihan, penilaian, dan penempatan. Perbezaan utama antara rangka kerja, terutamanya mengenai grap pengiraan

Python, kegemaran sains dan pemprosesan data, menawarkan ekosistem yang kaya untuk pengkomputeran berprestasi tinggi. Walau bagaimanapun, pengaturcaraan selari dalam Python memberikan cabaran yang unik. Tutorial ini meneroka cabaran -cabaran ini, memberi tumpuan kepada Interprete Global

Tutorial ini menunjukkan mewujudkan struktur data saluran paip tersuai di Python 3, memanfaatkan kelas dan pengendali yang berlebihan untuk fungsi yang dipertingkatkan. Fleksibiliti saluran paip terletak pada keupayaannya untuk menggunakan siri fungsi ke set data, GE
