用Python写一个简单的中文分词器
解压后取出以下文件:
训练数据:icwb2-data/training/pku_ training.utf8
测试数据:icwb2-data/testing/pku_ test.utf8
正确分词结果:icwb2-data/gold/pku_ test_ gold.utf8
评分工具:icwb2-data/script/socre
2 算法描述
算法是最简单的正向最大匹配(FMM):
用训练数据生成一个字典
对测试数据从左到右扫描,遇到一个最长的词,就切分下来,直到句子结束
注:这是最初的算法,这样做代码可以控制在60行内,后来看测试结果发现没有很好地处理数字问题, 才又增加了对数字的处理。
3 源代码及注释
#! /usr/bin/env python # -*- coding: utf-8 -*- # Author: minix # Date: 2013-03-20 import codecs import sys # 由规则处理的一些特殊符号 numMath = [u'0', u'1', u'2', u'3', u'4', u'5', u'6', u'7', u'8', u'9'] numMath_suffix = [u'.', u'%', u'亿', u'万', u'千', u'百', u'十', u'个'] numCn = [u'一', u'二', u'三', u'四', u'五', u'六', u'七', u'八', u'九', u'〇', u'零'] numCn_suffix_date = [u'年', u'月', u'日'] numCn_suffix_unit = [u'亿', u'万', u'千', u'百', u'十', u'个'] special_char = [u'(', u')'] def proc_num_math(line, start): """ 处理句子中出现的数学符号 """ oldstart = start while line[start] in numMath or line[start] in numMath_suffix: start = start + 1 if line[start] in numCn_suffix_date: start = start + 1 return start - oldstart def proc_num_cn(line, start): """ 处理句子中出现的中文数字 """ oldstart = start while line[start] in numCn or line[start] in numCn_suffix_unit: start = start + 1 if line[start] in numCn_suffix_date: start = start + 1 return start - oldstart def rules(line, start): """ 处理特殊规则 """ if line[start] in numMath: return proc_num_math(line, start) elif line[start] in numCn: return proc_num_cn(line, start) def genDict(path): """ 获取词典 """ f = codecs.open(path,'r','utf-8') contents = f.read() contents = contents.replace(u'\r', u'') contents = contents.replace(u'\n', u'') # 将文件内容按空格分开 mydict = contents.split(u' ') # 去除词典List中的重复 newdict = list(set(mydict)) newdict.remove(u'') # 建立词典 # key为词首字,value为以此字开始的词构成的List truedict = {} for item in newdict: if len(item)>0 and item[0] in truedict: value = truedict[item[0]] value.append(item) truedict[item[0]] = value else: truedict[item[0]] = [item] return truedict def print_unicode_list(uni_list): for item in uni_list: print item, def divideWords(mydict, sentence): """ 根据词典对句子进行分词, 使用正向匹配的算法,从左到右扫描,遇到最长的词, 就将它切下来,直到句子被分割完闭 """ ruleChar = [] ruleChar.extend(numCn) ruleChar.extend(numMath) result = [] start = 0 senlen = len(sentence) while start < senlen: curword = sentence[start] maxlen = 1 # 首先查看是否可以匹配特殊规则 if curword in numCn or curword in numMath: maxlen = rules(sentence, start) # 寻找以当前字开头的最长词 if curword in mydict: words = mydict[curword] for item in words: itemlen = len(item) if sentence[start:start+itemlen] == item and itemlen > maxlen: maxlen = itemlen result.append(sentence[start:start+maxlen]) start = start + maxlen return result def main(): args = sys.argv[1:] if len(args) < 3: print 'Usage: python dw.py dict_path test_path result_path' exit(-1) dict_path = args[0] test_path = args[1] result_path = args[2] dicts = genDict(dict_path) fr = codecs.open(test_path,'r','utf-8') test = fr.read() result = divideWords(dicts,test) fr.close() fw = codecs.open(result_path,'w','utf-8') for item in result: fw.write(item + ' ') fw.close() if __name__ == "__main__": main()
4 测试及评分结果
使用 dw.py 训练数据 测试数据, 生成结果文件
使用 score 根据训练数据,正确分词结果,和我们生成的结果进行评分
使用 tail 查看结果文件最后几行的总体评分,另外socre.utf8中还提供了大量的比较结果, 可以用于发现自己的分词结果在哪儿做的不够好
注:整个测试过程都在Ubuntu下完成
$ python dw.py pku_training.utf8 pku_test.utf8 pku_result.utf8
$ perl score pku_training.utf8 pku_test_gold.utf8 pku_result.utf8 > score.utf8
$ tail -22 score.utf8
INSERTIONS: 0
DELETIONS: 0
SUBSTITUTIONS: 0
NCHANGE: 0
NTRUTH: 27
NTEST: 27
TRUE WORDS RECALL: 1.000
TEST WORDS PRECISION: 1.000
=== SUMMARY:
=== TOTAL INSERTIONS: 4623
=== TOTAL DELETIONS: 1740
=== TOTAL SUBSTITUTIONS: 6650
=== TOTAL NCHANGE: 13013
=== TOTAL TRUE WORD COUNT: 104372
=== TOTAL TEST WORD COUNT: 107255
=== TOTAL TRUE WORDS RECALL: 0.920
=== TOTAL TEST WORDS PRECISION: 0.895
=== F MEASURE: 0.907
=== OOV Rate: 0.940
=== OOV Recall Rate: 0.917
=== IV Recall Rate: 0.966
基于词典的FMM算法是非常基础的分词算法,效果没那么好,不过足够简单,也易于入手,随着学习的深入,我可能还会用Python实现其它的分词算法。另外一个感受是,看书的时候尽量多去实现,这样会让你有足够的热情去关注理论的每一个细节,不会感到那么枯燥无力。

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



PHP dan Python masing -masing mempunyai kelebihan mereka sendiri, dan memilih mengikut keperluan projek. 1.PHP sesuai untuk pembangunan web, terutamanya untuk pembangunan pesat dan penyelenggaraan laman web. 2. Python sesuai untuk sains data, pembelajaran mesin dan kecerdasan buatan, dengan sintaks ringkas dan sesuai untuk pemula.

Fungsi Readdir dalam sistem Debian adalah panggilan sistem yang digunakan untuk membaca kandungan direktori dan sering digunakan dalam pengaturcaraan C. Artikel ini akan menerangkan cara mengintegrasikan Readdir dengan alat lain untuk meningkatkan fungsinya. Kaedah 1: Menggabungkan Program Bahasa C dan Pipeline Pertama, tulis program C untuk memanggil fungsi Readdir dan output hasilnya:#termasuk#termasuk#includeintMain (intargc, char*argv []) {dir*dir; structdirent*entry; if (argc! = 2) {

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Mengkonfigurasi pelayan HTTPS pada sistem Debian melibatkan beberapa langkah, termasuk memasang perisian yang diperlukan, menghasilkan sijil SSL, dan mengkonfigurasi pelayan web (seperti Apache atau Nginx) untuk menggunakan sijil SSL. Berikut adalah panduan asas, dengan mengandaikan anda menggunakan pelayan Apacheweb. 1. Pasang perisian yang diperlukan terlebih dahulu, pastikan sistem anda terkini dan pasang Apache dan OpenSSL: sudoaptDateSudoaptgradesudoaptinsta

Artikel ini akan membimbing anda tentang cara mengemas kini sijil NginxSSL anda pada sistem Debian anda. Langkah 1: Pasang Certbot terlebih dahulu, pastikan sistem anda mempunyai pakej CertBot dan Python3-CertBot-Nginx yang dipasang. Jika tidak dipasang, sila laksanakan arahan berikut: sudoapt-getupdateudoapt-getinstallcertbotpython3-certbot-nginx Langkah 2: Dapatkan dan konfigurasikan sijil Gunakan perintah certbot untuk mendapatkan sijil let'Sencrypt dan konfigurasikan nginx: sudoCertBot-ninx ikuti

Membangunkan plugin Gitlab pada Debian memerlukan beberapa langkah dan pengetahuan tertentu. Berikut adalah panduan asas untuk membantu anda memulakan proses ini. Memasang GitLab terlebih dahulu, anda perlu memasang GitLab pada sistem Debian anda. Anda boleh merujuk kepada manual pemasangan rasmi GitLab. Dapatkan token akses API sebelum melakukan integrasi API, anda perlu mendapatkan token akses API Gitlab terlebih dahulu. Buka papan pemuka Gitlab, cari pilihan "AccessTokens" dalam tetapan pengguna, dan menghasilkan token akses baru. Akan dijana

Apache adalah wira di belakang internet. Ia bukan sahaja pelayan web, tetapi juga platform yang kuat yang menyokong lalu lintas yang besar dan menyediakan kandungan dinamik. Ia memberikan fleksibiliti yang sangat tinggi melalui reka bentuk modular, yang membolehkan pengembangan pelbagai fungsi seperti yang diperlukan. Walau bagaimanapun, modulariti juga membentangkan cabaran konfigurasi dan prestasi yang memerlukan pengurusan yang teliti. Apache sesuai untuk senario pelayan yang memerlukan keperluan yang sangat disesuaikan dan memenuhi keperluan kompleks.

Apache ditulis dalam C. Bahasa ini menyediakan kelajuan, kestabilan, mudah alih, dan akses perkakasan langsung, menjadikannya sesuai untuk pembangunan pelayan web.
