Python的组合模式与责任链模式编程示例
组合模式
我们把Composite模式看成一个复杂的属性结构,其实基本有三种角色:树干(定义一些操作树叶leaf的操作),树枝(树干上有很多树枝)和树叶(树干想要具体操作的对象) ,Composite模式帮我们实现:即它们在充当对象的时候,还是其他对象的容易,从而提供一致性
python的例子
class Trunk(object): '''树干''' def __str__(self): pass def subtree(self): pass class Composite(Trunk): def __init__(self, left=None, right=None, length=None): self.left=left self.right=right self.length=length def __str__(self): # 这个结果是在调用subtree()的时候返回 if self.length: return "(" + self.left.__str__() + ", " + self.right.__str__() + ")" + ": " + str(self.length) else: return "(" + self.left.__str__() + ", " + self.right.__str__() + ")" # 这里其实就是一个技巧,通过这个函数返回下一级的对象,也就是它既是对象还可以是对象的容器 def subtree(self): return Composite(self.left, self.right) class Leaf(Trunk): '''叶子类,它没办法继续延伸了''' def __init__(self, name, length=None): self.name = name self.length=length self.left = None self.right = None def __str__(self): return self.name + ": " + str(self.length) def subtree(self): return Leaf(self.name, self.length) if __name__ == "__main__": # 只有叶子那么就直接返回__str__的拼装结果 t1 = Leaf('A', 0.71399) print t1 # 有个2个叶子的组合,返回的是2个叶子的对象的组合 t2 = Composite(Leaf('B', -0.00804), Leaf('C', 0.07470)) print t2 # 这个是嵌套的叶子的组合,树干上面有树枝,树枝上面有叶子 t3 = Composite(Leaf('A', 0.71399), Composite(Leaf('B', -0.00804), Leaf('C', 0.07470), 0.1533), 0.0666) print t3 # 直接通过左右节点找到对应的叶子对象了 t4 = t3.right.right.subtree() print t4 # t3的左树其实就是叶子对象了 t5 = t3.left.subtree() print t5
责任链模式
比如我们还在读书的时候,考试的分数都是几个档次,比如90-100分,80-90分,好吧我想做一个根据分数打印你的学习成绩的反馈, 比如90-100就是A+,80-90就是A,70-80就是B+… 当然你可以用很多种方法实现,我这里就来实现一个Chain模式:用一系列的类来响应, 但只有遇到适合处理它的类才会处理,类似与case和switch的作用
python的例子
class BaseHandler: # 它起到了链的作用 def successor(self, successor): self.successor = successor class ScoreHandler1(BaseHandler): def handle(self, request): if request > 90 and request <= 100: return "A+" else: # 否则传给下一个链,下同,但是我是要return回结果的 return self.successor.handle(request) class ScoreHandler2(BaseHandler): def handle(self, request): if request > 80 and request <= 90: return "A" else: return self.successor.handle(request) class ScoreHandler3(BaseHandler): def handle(self, request): if request > 70 and request <= 80: return "B+" else: return "unsatisfactory result" class Client: def __init__(self): h1 = ScoreHandler1() h2 = ScoreHandler2() h3 = ScoreHandler3() # 注意这个顺序,h3包含一个类似于default结果的东西,是要放在最后的,其他的顺序是无所谓的,比如h1和h2 h1.successor(h2) h2.successor(h3) requests = {'zhangsan': 78, 'lisi': 98, 'wangwu': 82, 'zhaoliu': 60} for name, score in requests.iteritems(): print '{} is {}'.format(name, h1.handle(score)) if __name__== "__main__": client = Client()
更多Python的组合模式与责任链模式编程示例相关文章请关注PHP中文网!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial ini menunjukkan cara menggunakan Python untuk memproses konsep statistik undang -undang ZIPF dan menunjukkan kecekapan membaca dan menyusun fail teks besar Python semasa memproses undang -undang. Anda mungkin tertanya -tanya apa maksud pengedaran ZIPF istilah. Untuk memahami istilah ini, kita perlu menentukan undang -undang Zipf. Jangan risau, saya akan cuba memudahkan arahan. Undang -undang Zipf Undang -undang Zipf hanya bermaksud: Dalam korpus bahasa semulajadi yang besar, kata -kata yang paling kerap berlaku muncul kira -kira dua kali lebih kerap sebagai kata -kata kerap kedua, tiga kali sebagai kata -kata kerap ketiga, empat kali sebagai kata -kata kerap keempat, dan sebagainya. Mari kita lihat contoh. Jika anda melihat corpus coklat dalam bahasa Inggeris Amerika, anda akan melihat bahawa perkataan yang paling kerap adalah "th

Artikel ini menerangkan cara menggunakan sup yang indah, perpustakaan python, untuk menghuraikan html. Ia memperincikan kaedah biasa seperti mencari (), find_all (), pilih (), dan get_text () untuk pengekstrakan data, pengendalian struktur dan kesilapan HTML yang pelbagai, dan alternatif (sel

Berurusan dengan imej yang bising adalah masalah biasa, terutamanya dengan telefon bimbit atau foto kamera resolusi rendah. Tutorial ini meneroka teknik penapisan imej di Python menggunakan OpenCV untuk menangani isu ini. Penapisan Imej: Alat yang berkuasa Penapis Imej

Fail PDF adalah popular untuk keserasian silang platform mereka, dengan kandungan dan susun atur yang konsisten merentasi sistem operasi, peranti membaca dan perisian. Walau bagaimanapun, tidak seperti Python memproses fail teks biasa, fail PDF adalah fail binari dengan struktur yang lebih kompleks dan mengandungi unsur -unsur seperti fon, warna, dan imej. Mujurlah, tidak sukar untuk memproses fail PDF dengan modul luaran Python. Artikel ini akan menggunakan modul PYPDF2 untuk menunjukkan cara membuka fail PDF, mencetak halaman, dan mengekstrak teks. Untuk penciptaan dan penyuntingan fail PDF, sila rujuk tutorial lain dari saya. Penyediaan Inti terletak pada menggunakan modul luaran PYPDF2. Pertama, pasangkannya menggunakan PIP: Pip adalah p

Tutorial ini menunjukkan cara memanfaatkan caching redis untuk meningkatkan prestasi aplikasi python, khususnya dalam rangka kerja Django. Kami akan merangkumi pemasangan Redis, konfigurasi Django, dan perbandingan prestasi untuk menyerlahkan bene

Artikel ini membandingkan tensorflow dan pytorch untuk pembelajaran mendalam. Ia memperincikan langkah -langkah yang terlibat: penyediaan data, bangunan model, latihan, penilaian, dan penempatan. Perbezaan utama antara rangka kerja, terutamanya mengenai grap pengiraan

Python, kegemaran sains dan pemprosesan data, menawarkan ekosistem yang kaya untuk pengkomputeran berprestasi tinggi. Walau bagaimanapun, pengaturcaraan selari dalam Python memberikan cabaran yang unik. Tutorial ini meneroka cabaran -cabaran ini, memberi tumpuan kepada Interprete Global

Tutorial ini menunjukkan mewujudkan struktur data saluran paip tersuai di Python 3, memanfaatkan kelas dan pengendali yang berlebihan untuk fungsi yang dipertingkatkan. Fleksibiliti saluran paip terletak pada keupayaannya untuk menggunakan siri fungsi ke set data, GE
