Python画ROC曲线和AUC值计算
前言
ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣。这篇文章将先简单的介绍ROC和AUC,而后用实例演示如何python作出ROC曲线图以及计算AUC。
AUC介绍
AUC(Area Under Curve)是机器学习二分类模型中非常常用的评估指标,相比于F1-Score对项目的不平衡有更大的容忍性,目前常见的机器学习库中(比如scikit-learn)一般也都是集成该指标的计算,但是有时候模型是单独的或者自己编写的,此时想要评估训练模型的好坏就得自己搞一个AUC计算模块,本文在查询资料时发现libsvm-tools有一个非常通俗易懂的auc计算,因此抠出来用作日后之用。
AUC计算
AUC的计算分为下面三个步骤:
1、计算数据的准备,如果模型训练时只有训练集的话一般使用交叉验证的方式来计算,如果有评估集(evaluate)一般就可以直接计算了,数据的格式一般就是需要预测得分以及其目标类别(注意是目标类别,不是预测得到的类别)
2、根据阈值划分得到横(X:False Positive Rate)以及纵(Y:True Positive Rate)点
3、将坐标点连成曲线之后计算其曲线下面积,就是AUC的值
直接上python代码
#! -*- coding=utf-8 -*- import pylab as pl from math import log,exp,sqrt evaluate_result="you file path" db = [] #[score,nonclk,clk] pos, neg = 0, 0 with open(evaluate_result,'r') as fs: for line in fs: nonclk,clk,score = line.strip().split('\t') nonclk = int(nonclk) clk = int(clk) score = float(score) db.append([score,nonclk,clk]) pos += clk neg += nonclk db = sorted(db, key=lambda x:x[0], reverse=True) #计算ROC坐标点 xy_arr = [] tp, fp = 0., 0. for i in range(len(db)): tp += db[i][2] fp += db[i][1] xy_arr.append([fp/neg,tp/pos]) #计算曲线下面积 auc = 0. prev_x = 0 for x,y in xy_arr: if x != prev_x: auc += (x - prev_x) * y prev_x = x print "the auc is %s."%auc x = [_v[0] for _v in xy_arr] y = [_v[1] for _v in xy_arr] pl.title("ROC curve of %s (AUC = %.4f)" % ('svm',auc)) pl.xlabel("False Positive Rate") pl.ylabel("True Positive Rate") pl.plot(x, y)# use pylab to plot x and y pl.show()# show the plot on the screen
输入的数据集可以参考svm预测结果
其格式为:
nonclk \t clk \t score
其中:
1、nonclick:未点击的数据,可以看做负样本的数量
2、clk:点击的数量,可以看做正样本的数量
3、score:预测的分数,以该分数为group进行正负样本的预统计可以减少AUC的计算量
运行的结果为:
如果本机没安装pylab可以直接注释依赖以及画图部分
注意
上面贴的代码:
1、只能计算二分类的结果(至于二分类的标签随便处理)
2、上面代码中每个score都做了一次阈值,其实这样效率是相当低的,可以对样本进行采样或者在计算横轴坐标时进行等分计算
更多Python画ROC曲线和AUC值计算相关文章请关注PHP中文网!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Penyelesaian kepada Isu Kebenaran Semasa Melihat Versi Python di Terminal Linux Apabila anda cuba melihat versi Python di Terminal Linux, masukkan Python ...

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...

Apabila menggunakan Perpustakaan Pandas Python, bagaimana untuk menyalin seluruh lajur antara dua data data dengan struktur yang berbeza adalah masalah biasa. Katakan kita mempunyai dua DAT ...

Cara mengelakkan dikesan semasa menggunakan fiddlerevery di mana untuk bacaan lelaki-dalam-pertengahan apabila anda menggunakan fiddlerevery di mana ...

Ekspresi biasa adalah alat yang berkuasa untuk memadankan corak dan manipulasi teks dalam pengaturcaraan, meningkatkan kecekapan dalam pemprosesan teks merentasi pelbagai aplikasi.

Bagaimanakah Uvicorn terus mendengar permintaan HTTP? Uvicorn adalah pelayan web ringan berdasarkan ASGI. Salah satu fungsi terasnya ialah mendengar permintaan HTTP dan teruskan ...

Di Python, bagaimana untuk membuat objek secara dinamik melalui rentetan dan panggil kaedahnya? Ini adalah keperluan pengaturcaraan yang biasa, terutamanya jika perlu dikonfigurasikan atau dijalankan ...

Artikel ini membincangkan perpustakaan Python yang popular seperti Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask, dan Permintaan, memperincikan kegunaan mereka dalam pengkomputeran saintifik, analisis data, visualisasi, pembelajaran mesin, pembangunan web, dan h
