Rumah pembangunan bahagian belakang Tutorial Python Python中字典的合并值相加与异或对比

Python中字典的合并值相加与异或对比

Mar 03, 2017 pm 03:18 PM

字典合并值相加

在统计汇总游戏数据的时候,有些数据是是每天用字典存的,当我要对多天汇总的时候,就需要合并字典了。
如果key相同的话它们的值就相加。
不能用update方法,因为用update方法则相同的key的值会覆盖,而不是相加。
千言不如一码。

1

2

3

4

5

6

7

8

9

10

def union_dict(*objs):

  _keys = set(sum([obj.keys() for obj in objs],[]))

  _total = {}

  for _key in _keys:

    _total[_key] = sum([obj.get(_key,0) for obj in objs])

  return _total

  

obj1 = {'a':1,'b':2,'c':3}

obj2 = {'a':1,'b':3,'d':4}

print union_dict(obj1,obj2)

Salin selepas log masuk


输出

1

{'a': 2, 'c': 3, 'b': 5, 'd': 4}

Salin selepas log masuk

sum([obj.keys() for obj in objs],[])这句可能不太好理解。
其实sum()函数也有"鲜为人知的参数",即第2个参数,start参数,默认是0。
而且不止可以是int类型,还可以是其他支持+操作符的东西,比如[]。
利用这一点,可以对二层数组打平成一层。
比如

1

2

>>sum([[1,2,3],[4,5]],[])

[1,2,3,4,5]

Salin selepas log masuk

对字典diff("异或")
在游戏中,我要监控记录物品系统中的背包变动情况。("异或"的结果是相同的消除,剩下不同的,即变动的)
假设背包的存储结构是这样的。
是一个字典,{物品id:数量}。
在背包类初始化的时候,把背包物品信息copy保存到一个oldbag变量,进行一些物品操作后(比如使用物品,领取物品奖励等),在调用save()方法存进redis时,对新的bag字典与oldbag字典进行差异对比就得出变动情况了。
千言不如一码。

1

2

3

4

5

6

7

8

9

10

11

12

13

def symmetric_difference(_oldobj,_newobj):

  _oldkeys = _oldobj.keys()

  _newkeys = _newobj.keys()

  _diff = {}

  for _key in set(_oldkeys + _newkeys):

    _val = _newobj.get(_key,0) - _oldobj.get(_key,0)

    if _val:

      _diff[_key] = _val 

  return _diff 

  

oldobj = {'a':1,'b':2,'c':3}

newobj = {'a':1,'b':3,'d':4}

print symmetric_difference(oldobj,newobj)

Salin selepas log masuk

输出

1

{'b': 1, 'd': 4,'c': -3}

Salin selepas log masuk

代表玩家得到了1个'b'物品,4个'd'物品,失去了3个'c'物品。

更多Python中字典的合并值相加与异或对比相关文章请关注PHP中文网!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
2 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Repo: Cara menghidupkan semula rakan sepasukan
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Cara mendapatkan biji gergasi
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Cara Menggunakan Python untuk Mencari Pengagihan Zipf Fail Teks Cara Menggunakan Python untuk Mencari Pengagihan Zipf Fail Teks Mar 05, 2025 am 09:58 AM

Tutorial ini menunjukkan cara menggunakan Python untuk memproses konsep statistik undang -undang ZIPF dan menunjukkan kecekapan membaca dan menyusun fail teks besar Python semasa memproses undang -undang. Anda mungkin tertanya -tanya apa maksud pengedaran ZIPF istilah. Untuk memahami istilah ini, kita perlu menentukan undang -undang Zipf. Jangan risau, saya akan cuba memudahkan arahan. Undang -undang Zipf Undang -undang Zipf hanya bermaksud: Dalam korpus bahasa semulajadi yang besar, kata -kata yang paling kerap berlaku muncul kira -kira dua kali lebih kerap sebagai kata -kata kerap kedua, tiga kali sebagai kata -kata kerap ketiga, empat kali sebagai kata -kata kerap keempat, dan sebagainya. Mari kita lihat contoh. Jika anda melihat corpus coklat dalam bahasa Inggeris Amerika, anda akan melihat bahawa perkataan yang paling kerap adalah "th

Bagaimana saya menggunakan sup yang indah untuk menghuraikan html? Bagaimana saya menggunakan sup yang indah untuk menghuraikan html? Mar 10, 2025 pm 06:54 PM

Artikel ini menerangkan cara menggunakan sup yang indah, perpustakaan python, untuk menghuraikan html. Ia memperincikan kaedah biasa seperti mencari (), find_all (), pilih (), dan get_text () untuk pengekstrakan data, pengendalian struktur dan kesilapan HTML yang pelbagai, dan alternatif (sel

Bagaimana untuk melakukan pembelajaran mendalam dengan Tensorflow atau Pytorch? Bagaimana untuk melakukan pembelajaran mendalam dengan Tensorflow atau Pytorch? Mar 10, 2025 pm 06:52 PM

Artikel ini membandingkan tensorflow dan pytorch untuk pembelajaran mendalam. Ia memperincikan langkah -langkah yang terlibat: penyediaan data, bangunan model, latihan, penilaian, dan penempatan. Perbezaan utama antara rangka kerja, terutamanya mengenai grap pengiraan

Serialization dan deserialisasi objek python: Bahagian 1 Serialization dan deserialisasi objek python: Bahagian 1 Mar 08, 2025 am 09:39 AM

Serialization dan deserialization objek Python adalah aspek utama dari mana-mana program bukan remeh. Jika anda menyimpan sesuatu ke fail python, anda melakukan siri objek dan deserialization jika anda membaca fail konfigurasi, atau jika anda menjawab permintaan HTTP. Dalam erti kata, siri dan deserialization adalah perkara yang paling membosankan di dunia. Siapa yang peduli dengan semua format dan protokol ini? Anda mahu berterusan atau mengalirkan beberapa objek python dan mengambilnya sepenuhnya pada masa yang akan datang. Ini adalah cara yang baik untuk melihat dunia pada tahap konseptual. Walau bagaimanapun, pada tahap praktikal, skim siri, format atau protokol yang anda pilih boleh menentukan kelajuan, keselamatan, kebebasan status penyelenggaraan, dan aspek lain dari program

Modul Matematik dalam Python: Statistik Modul Matematik dalam Python: Statistik Mar 09, 2025 am 11:40 AM

Modul Statistik Python menyediakan keupayaan analisis statistik data yang kuat untuk membantu kami dengan cepat memahami ciri -ciri keseluruhan data, seperti biostatistik dan analisis perniagaan. Daripada melihat titik data satu demi satu, cuma melihat statistik seperti min atau varians untuk menemui trend dan ciri dalam data asal yang mungkin diabaikan, dan membandingkan dataset besar dengan lebih mudah dan berkesan. Tutorial ini akan menjelaskan cara mengira min dan mengukur tahap penyebaran dataset. Kecuali dinyatakan sebaliknya, semua fungsi dalam modul ini menyokong pengiraan fungsi min () dan bukan hanya menjumlahkan purata. Nombor titik terapung juga boleh digunakan. Import secara rawak Statistik import dari fracti

Pengendalian ralat profesional dengan python Pengendalian ralat profesional dengan python Mar 04, 2025 am 10:58 AM

Dalam tutorial ini, anda akan belajar bagaimana menangani keadaan ralat di Python dari sudut pandang keseluruhan sistem. Pengendalian ralat adalah aspek kritikal reka bentuk, dan ia melintasi dari tahap terendah (kadang -kadang perkakasan) sepanjang jalan ke pengguna akhir. Jika y

Apakah beberapa perpustakaan Python yang popular dan kegunaan mereka? Apakah beberapa perpustakaan Python yang popular dan kegunaan mereka? Mar 21, 2025 pm 06:46 PM

Artikel ini membincangkan perpustakaan Python yang popular seperti Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask, dan Permintaan, memperincikan kegunaan mereka dalam pengkomputeran saintifik, analisis data, visualisasi, pembelajaran mesin, pembangunan web, dan h

Mengikis halaman web dalam python dengan sup yang indah: carian dan pengubahsuaian dom Mengikis halaman web dalam python dengan sup yang indah: carian dan pengubahsuaian dom Mar 08, 2025 am 10:36 AM

Tutorial ini dibina pada pengenalan sebelumnya kepada sup yang indah, memberi tumpuan kepada manipulasi DOM di luar navigasi pokok mudah. Kami akan meneroka kaedah dan teknik carian yang cekap untuk mengubahsuai struktur HTML. Satu kaedah carian dom biasa ialah Ex

See all articles