Python输出汉字字库及将文字转换为图片
用python输出汉字字库
问题1:假设我们知道汉字编码范围是0x4E00到0x9FA5,怎么从十六进制的编码转成人类可读的字呢?
问题2:怎么把unicode编码的字写入文件呢,如果直接用open()的话,会提示UnicodeEncodeError: 'ascii' codec can't encode character u'\u4e00' in position 0: ordinal not in range(128)
问题1的答案是用unichr,问题2的答案是用codecs。
下面上代码。
import codecs start,end = (0x4E00, 0x9FA5) with codecs.open("chinese.txt", "wb", encoding="utf-8") as f: for codepoint in range(int(start),int(end)): f.write(unichr(codepoint))
打开chinese.txt文件,截图如下
用python将文本转图片字库
上面提到怎么得到汉字字库,下面就来讲怎么把一个一个的字转成图片,这在机器学习中会有用处。
一句话,用pygame渲染文字到图片上。
下面上代码。
import os import pygame chinese_dir = 'chinese' if not os.path.exists(chinese_dir): os.mkdir(chinese_dir) pygame.init() start,end = (0x4E00, 0x9FA5)#汉字编码范围 for codepoint in range(int(start),int(end)): word = unichr(codepoint) font = pygame.font.Font("msyh.ttc", 22)#当前目录下要有微软雅黑的字体文件msyh.ttc,或者去c:\Windows\Fonts目录下找 rtext = font.render(word, True, (0, 0, 0), (255, 255, 255)) pygame.image.save(rtext, os.path.join(chinese_dir,word+".png"))
下面是效果截图。
更多Python输出汉字字库及将文字转换为图片相关文章请关注PHP中文网!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Penyelesaian kepada Isu Kebenaran Semasa Melihat Versi Python di Terminal Linux Apabila anda cuba melihat versi Python di Terminal Linux, masukkan Python ...

Artikel ini menerangkan cara menggunakan sup yang indah, perpustakaan python, untuk menghuraikan html. Ia memperincikan kaedah biasa seperti mencari (), find_all (), pilih (), dan get_text () untuk pengekstrakan data, pengendalian struktur dan kesilapan HTML yang pelbagai, dan alternatif (sel

Modul Statistik Python menyediakan keupayaan analisis statistik data yang kuat untuk membantu kami dengan cepat memahami ciri -ciri keseluruhan data, seperti biostatistik dan analisis perniagaan. Daripada melihat titik data satu demi satu, cuma melihat statistik seperti min atau varians untuk menemui trend dan ciri dalam data asal yang mungkin diabaikan, dan membandingkan dataset besar dengan lebih mudah dan berkesan. Tutorial ini akan menjelaskan cara mengira min dan mengukur tahap penyebaran dataset. Kecuali dinyatakan sebaliknya, semua fungsi dalam modul ini menyokong pengiraan fungsi min () dan bukan hanya menjumlahkan purata. Nombor titik terapung juga boleh digunakan. Import secara rawak Statistik import dari fracti

Artikel ini membandingkan tensorflow dan pytorch untuk pembelajaran mendalam. Ia memperincikan langkah -langkah yang terlibat: penyediaan data, bangunan model, latihan, penilaian, dan penempatan. Perbezaan utama antara rangka kerja, terutamanya mengenai grap pengiraan

Artikel ini membincangkan perpustakaan Python yang popular seperti Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask, dan Permintaan, memperincikan kegunaan mereka dalam pengkomputeran saintifik, analisis data, visualisasi, pembelajaran mesin, pembangunan web, dan h

Artikel ini membimbing pemaju Python mengenai bangunan baris baris komando (CLI). Butirannya menggunakan perpustakaan seperti Typer, Klik, dan ArgParse, menekankan pengendalian input/output, dan mempromosikan corak reka bentuk mesra pengguna untuk kebolehgunaan CLI yang lebih baik.

Apabila menggunakan Perpustakaan Pandas Python, bagaimana untuk menyalin seluruh lajur antara dua data data dengan struktur yang berbeza adalah masalah biasa. Katakan kita mempunyai dua DAT ...

Artikel ini membincangkan peranan persekitaran maya di Python, memberi tumpuan kepada menguruskan kebergantungan projek dan mengelakkan konflik. Ia memperincikan penciptaan, pengaktifan, dan faedah mereka dalam meningkatkan pengurusan projek dan mengurangkan isu pergantungan.
