JavaScript 中匿名函数的递归调用的代码详细介绍
不管是什么编程语言,相信稍微写过几行代码的同学,对递归都不会陌生。 以一个简单的阶乘计算为例:
function factorial(n) { if (n <= 1) { return 1; } else { return n * factorial(n-1); } }
我们可以看出,递归就是在函数内部调用对自身的调用。 那么问题来了,我们知道在Javascript中,有一类函数叫做匿名函数,没有名称,怎么调用呢?当然你可以说,可以把匿名函数赋值给一个常量:
const factorial = function(n){ if (n <= 1) { return 1; } else { return n * factorial(n-1); } }
这当然是可以的。但是对于一些像,函数编写时并不知道自己将要赋值给一个明确的变量的情况时,就会遇到麻烦了。如:
(function(f){ f(10); })(function(n){ if (n <= 1) { return 1; } else { return n * factorial(n-1);//太依赖于上下文变量名 } }) //Uncaught ReferenceError: factorial is not defined(…)
那么存不存在一种完全不需要这种给予准确函数名(函数引用变量名)的方式呢?
arguments.callee
我们知道在任何一个function
内部,都可以访问到一个叫做arguments
的变量。
(function(){console.dir(arguments)})(1,2)
打印出这个arguments
变量的细节,可以看出他是Arguments
的一个实例,而且从数据结构上来讲,他是一个类数组。他除了类数组的元素成员和length
属性外,还有一个callee
方法。 那么这个callee
方法是做什么的呢?我们来看下MDN
callee
是arguments
对象的属性。在该函数的函数体内,它可以指向当前正在执行的函数。当函数是匿名函数时,这是很有用的, 比如没有名字的函数表达式 (也被叫做”匿名函数”)。
哈哈,很明显这就是我们想要的。接下来就是:
(function(f){ console.log(f(10)); })(function(n){ if (n <= 1) { return 1; } else { return n * arguments.callee(n-1); } }) //output: 3628800
但是还有一个问题,MDN的文档里明确指出
警告
:在 ECMAScript 第五版 (ES5) 的 严格模式 中禁止使用 arguments.callee()。
哎呀,原来在ES5的use strict;
中不给用啊,那么在ES6中,我们换个ES6的arrow function
写写看:
((f) => console.log(f(10)))( (n) => n <= 1? 1: arguments.callee(n-1)) //Uncaught ReferenceError: arguments is not defined(…)
有一定ES6基础的同学,估计老早就想说了,箭头函数就是个简写形式的函数表达式,并且它拥有词法作用域的this
值(即不会新产生自己作用域下的this
, arguments
, super
和 new.target
等对象),且都是匿名的。
那怎么办呢?嘿嘿,我们需要借助一点FP的思想了。
Y组合子
关于Y Combinator
的文章可谓数不胜数,这个由师从希尔伯特的著名逻辑学家Haskell B.Curry(Haskell语言就是以他命名的,而函数式编程语言里面的Curry手法也是以他命名)“发明”出来的组合算子(Haskell是研究组合逻辑(combinatory logic)的)仿佛有种神奇的魔力,它能够算出给定lambda表达式(函数)的不动点。从而使得递归成为可能。
这里需要告知一个概念不动点组合子
:
不动点组合子(英语:Fixed-point combinator,或不动点算子)是计算其他函数的一个不动点的高阶函数。
函数f的不动点是一个值x使得
f(x) = x
。例如,0和1是函数 f(x) = x^2 的不动点,因为 0^2 = 0而 1^2 = 1。鉴于一阶函数(在简单值比如整数上的函数)的不动点是个一阶值,高阶函数f的不动点是另一个函数g使得f(g) = g
。那么,不动点算子是任何函数fix使得对于任何函数f都有
f(fix(f)) = fix(f)
. 不动点组合子允许定义匿名的递归函数。它们可以用非递归的lambda抽象来定义.
在无类型lambda演算中众所周知的(可能是最简单的)不动点组合子叫做Y组合子。
接下来,我们通过一定的演算推到下这个Y组合子。
// 首先我们定义这样一个可以用作求阶乘的递归函数 const fact = (n) => n<=1?1:n*fact(n-1) console.log(fact(5)) //120 // 既然不让这个函数有名字,我们就先给这个递归方法一个叫做self的代号 // 首先是一个接受这个递归函数作为参数的一个高阶函数 const fact_gen = (self) => (n) => n<=1?1:n*self(n-1) console.log(fact_gen(fact)(5)) //120 // 我们是将递归方法和参数n,都传入递归方法,得到这样一个函数 const fact1 = (self, n) => n<=1?1:n*self(self, n-1) console.log(fact1(fact1, 5)) //120 // 我们将fact1 柯理化,得到fact2 const fact2 = (self) => (n) => n<=1?1:n*self(self)(n-1) console.log(fact2(fact2)(5)) //120 // 惊喜的事发生了,如果我们将self(self)看做一个整体 // 作为参数传入一个新的函数: (g)=> n<= 1? 1: n*g(n-1) const fact3 = (self) => (n) => ((g)=>n <= 1?1:n*g(n-1))(self(self)) console.log(fact3(fact3)(5)) //120 // fact3 还有一个问题是这个新抽离出来的函数,是上下文有关的 // 他依赖于上文的n, 所以我们将n作为新的参数 // 重新构造出这么一个函数: (g) => (m) => m<=1?1:m*g(m-1) const fact4 = (self) => (n) => ((g) => (m) => m<=1?1:m*g(m-1))(self(self))(n) console.log(fact4(fact4)(5)) // 很明显fact4中的(g) => (m) => m<=1?1:m*g(m-1) 就是 fact_gen // 这就很有意思啦,这个fact_gen上下文无关了, 可以作为参数传入了 const weirdFunc = (func_gen) => (self) => (n) => func_gen(self(self))(n) console.log(weirdFunc(fact_gen)(weirdFunc(fact_gen))(5)) //120 // 此时我们就得到了一种Y组合子的形式了 const Y_ = (gen) => (f) => (n)=> gen(f(f))(n) // 构造一个阶乘递归也很easy了 const factorial = Y_(fact_gen) console.log(factorial(factorial)(5)) //120 // 但上面这个factorial并不是我们想要的 // 只是一种fact2,fact3,fact4的形式 // 我们肯定希望这个函数的调用是factorial(5) // 没问题,我们只需要把定义一个 f' = f(f) = (f)=>f(f) // eg. const factorial = fact2(fact2) const Y = gen => n => (f=>f(f))(gen)(n) console.log(Y(fact2)(5)) //120 console.log(Y(fact3)(5)) //120 console.log(Y(fact4)(5)) //120
推导到这里,是不是已经感觉到脊背嗖凉了一下,反正笔者我第一次接触在康托尔、哥德尔、图灵——永恒的金色对角线这篇文章里接触到的时候,整个人瞬间被这种以数学语言去表示程序的方式所折服。
来,我们回忆下,我们最终是不是得到了一个不定点算子,这个算子可以找出一个高阶函数的不动点f(Y(f)) = Y(f)
。 将一个函数传入一个算子(函数),得到一个跟自己功能一样,但又并不是自己的函数,这个说法有些拗口,但又味道十足。
好了,我们回到最初的问题,怎么完成匿名函数的递归呢?有了Y组合子就很简单了:
/*求不动点*/ (f => f(f)) /*以不动点为参数的递归函数*/ (fact => n => n <= 1 ? 1 : n * fact(fact)(n - 1)) /*递归函数参数*/ (5) // 120
曾经看到过一些说法是”最让人沮丧是,当你推导出它(Y组合子)后,完全没法儿通过只看它一眼就说出它到底是想干嘛”,而我恰恰认为这就是函数式编程的魅力,也是数学的魅力所在,精简优雅的公式,背后隐藏着复杂有趣的推导过程。
总结
务实点儿讲,匿名函数的递归调用,在日常的js开发中,用到的真的很少。把这个问题拿出来讲,主要是想引出对arguments
的一些讲解和对Y组合子
这个概念的一个普及。
但既然讲都讲了,我们真的用到的话,该怎么选择呢?来,我们喜闻乐见的benchmark下: 分别测试:
// fact fact(10) // Y (f => f(f))(fact => n => n <= 1 ? 1 : n * fact(fact)(n - 1))(10) // Y' const fix = (f) => f(f) const ygen = fix(fact2) ygen(10) // callee (function(n) {n<=1?1:n*arguments.callee(n-1)})(10)
环境:Macbook pro(2.5 GHz Intel Core i7), node-5.0.0(V8:4.6.85.28) 结果:
fact x 18,604,101 ops/sec ±2.22% (88 runs sampled)
Y x 2,799,791 ops/sec ±1.03% (87 runs sampled)
Y’ x 3,678,654 ops/sec ±1.57% (77 runs sampled)
callee x 2,632,864 ops/sec ±0.99% (81 runs sampled)
可见Y和callee的性能相差不多,因为需要临时构建函数,所以跟直接的fact递归调用有差不多一个数量级的差异,将不定点函数算出后保存下来,大概会有一倍左右的性能提升。
以上就是JavaScript 中匿名函数的递归调用的代码详细介绍的内容,更多相关内容请关注PHP中文网(www.php.cn)!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Cara menggunakan WebSocket dan JavaScript untuk melaksanakan sistem pengecaman pertuturan dalam talian Pengenalan: Dengan perkembangan teknologi yang berterusan, teknologi pengecaman pertuturan telah menjadi bahagian penting dalam bidang kecerdasan buatan. Sistem pengecaman pertuturan dalam talian berdasarkan WebSocket dan JavaScript mempunyai ciri kependaman rendah, masa nyata dan platform merentas, dan telah menjadi penyelesaian yang digunakan secara meluas. Artikel ini akan memperkenalkan cara menggunakan WebSocket dan JavaScript untuk melaksanakan sistem pengecaman pertuturan dalam talian.

WebSocket dan JavaScript: Teknologi utama untuk merealisasikan sistem pemantauan masa nyata Pengenalan: Dengan perkembangan pesat teknologi Internet, sistem pemantauan masa nyata telah digunakan secara meluas dalam pelbagai bidang. Salah satu teknologi utama untuk mencapai pemantauan masa nyata ialah gabungan WebSocket dan JavaScript. Artikel ini akan memperkenalkan aplikasi WebSocket dan JavaScript dalam sistem pemantauan masa nyata, memberikan contoh kod dan menerangkan prinsip pelaksanaannya secara terperinci. 1. Teknologi WebSocket

Pengenalan kepada cara menggunakan JavaScript dan WebSocket untuk melaksanakan sistem pesanan dalam talian masa nyata: Dengan populariti Internet dan kemajuan teknologi, semakin banyak restoran telah mula menyediakan perkhidmatan pesanan dalam talian. Untuk melaksanakan sistem pesanan dalam talian masa nyata, kami boleh menggunakan teknologi JavaScript dan WebSocket. WebSocket ialah protokol komunikasi dupleks penuh berdasarkan protokol TCP, yang boleh merealisasikan komunikasi dua hala masa nyata antara pelanggan dan pelayan. Dalam sistem pesanan dalam talian masa nyata, apabila pengguna memilih hidangan dan membuat pesanan

Cara menggunakan WebSocket dan JavaScript untuk melaksanakan sistem tempahan dalam talian Dalam era digital hari ini, semakin banyak perniagaan dan perkhidmatan perlu menyediakan fungsi tempahan dalam talian. Adalah penting untuk melaksanakan sistem tempahan dalam talian yang cekap dan masa nyata. Artikel ini akan memperkenalkan cara menggunakan WebSocket dan JavaScript untuk melaksanakan sistem tempahan dalam talian dan memberikan contoh kod khusus. 1. Apakah itu WebSocket? WebSocket ialah kaedah dupleks penuh pada sambungan TCP tunggal.

JavaScript dan WebSocket: Membina sistem ramalan cuaca masa nyata yang cekap Pengenalan: Hari ini, ketepatan ramalan cuaca sangat penting kepada kehidupan harian dan membuat keputusan. Apabila teknologi berkembang, kami boleh menyediakan ramalan cuaca yang lebih tepat dan boleh dipercayai dengan mendapatkan data cuaca dalam masa nyata. Dalam artikel ini, kita akan mempelajari cara menggunakan teknologi JavaScript dan WebSocket untuk membina sistem ramalan cuaca masa nyata yang cekap. Artikel ini akan menunjukkan proses pelaksanaan melalui contoh kod tertentu. Kami

Tutorial JavaScript: Bagaimana untuk mendapatkan kod status HTTP, contoh kod khusus diperlukan: Dalam pembangunan web, interaksi data dengan pelayan sering terlibat. Apabila berkomunikasi dengan pelayan, kami selalunya perlu mendapatkan kod status HTTP yang dikembalikan untuk menentukan sama ada operasi itu berjaya dan melaksanakan pemprosesan yang sepadan berdasarkan kod status yang berbeza. Artikel ini akan mengajar anda cara menggunakan JavaScript untuk mendapatkan kod status HTTP dan menyediakan beberapa contoh kod praktikal. Menggunakan XMLHttpRequest

Penggunaan: Dalam JavaScript, kaedah insertBefore() digunakan untuk memasukkan nod baharu dalam pepohon DOM. Kaedah ini memerlukan dua parameter: nod baharu untuk dimasukkan dan nod rujukan (iaitu nod di mana nod baharu akan dimasukkan).

Pengendalian pengecualian dalam panggilan rekursif: Mengehadkan kedalaman rekursif: Mencegah limpahan tindanan. Gunakan pengendalian pengecualian: Gunakan pernyataan cuba-tangkap untuk mengendalikan pengecualian. Pengoptimuman rekursi ekor: elakkan limpahan tindanan.
