Jadual Kandungan
引言
Executor和Future
使用submit来操作线程池/进程池
使用map/wait来操作线程池/进程池
使用submit操作回顾
使用map
第三种选择wait
思考题
Rumah pembangunan bahagian belakang Tutorial Python Python并发编程之线程池/进程池

Python并发编程之线程池/进程池

Mar 18, 2017 am 11:37 AM
python

引言

Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码,但是当项目达到一定的规模,频繁创建/销毁进程或者线程是非常消耗资源的,这个时候我们就要编写自己的线程池/进程池,以空间换时间。但从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threading和multiprocessing的进一步抽象,对编写线程池/进程池提供了直接的支持。

Executor和Future

concurrent.futures模块的基础是Exectuor,Executor是一个抽象类,它不能被直接使用。但是它提供的两个子类ThreadPoolExecutor和ProcessPoolExecutor却是非常有用,顾名思义两者分别被用来创建线程池和进程池的代码。我们可以将相应的tasks直接放入线程池/进程池,不需要维护Queue来操心死锁的问题,线程池/进程池会自动帮我们调度。

Future这个概念相信有java和nodejs下编程经验的朋友肯定不陌生了,你可以把它理解为一个在未来完成的操作,这是异步编程的基础,传统编程模式下比如我们操作queue.get的时候,在等待返回结果之前会产生阻塞,cpu不能让出来做其他事情,而Future的引入帮助我们在等待的这段时间可以完成其他的操作。关于在Python中进行异步IO可以阅读完本文之后参考我的Python并发编程之协程/异步IO。

p.s: 如果你依然在坚守Python2.x,请先安装futures模块。

pip install futures
Salin selepas log masuk

使用submit来操作线程池/进程池

我们先通过下面这段代码来了解一下线程池的概念

# example1.py
from concurrent.futures import ThreadPoolExecutor
import time
def return_future_result(message):
    time.sleep(2)
    return message
pool = ThreadPoolExecutor(max_workers=2)  # 创建一个最大可容纳2个task的线程池
future1 = pool.submit(return_future_result, ("hello"))  # 往线程池里面加入一个task
future2 = pool.submit(return_future_result, ("world"))  # 往线程池里面加入一个task
print(future1.done())  # 判断task1是否结束
time.sleep(3)
print(future2.done())  # 判断task2是否结束
print(future1.result())  # 查看task1返回的结果
print(future2.result())  # 查看task2返回的结果
Salin selepas log masuk

我们根据运行结果来分析一下。我们使用submit方法来往线程池中加入一个task,submit返回一个Future对象,对于Future对象可以简单地理解为一个在未来完成的操作。在第一个print语句中很明显因为time.sleep(2)的原因我们的future1没有完成,因为我们使用time.sleep(3)暂停了主线程,所以到第二个print语句的时候我们线程池里的任务都已经全部结束。

ziwenxie :: ~ » python example1.py
False
True
hello
world
# 在上述程序执行的过程中,通过ps命令我们可以看到三个线程同时在后台运行
ziwenxie :: ~ » ps -eLf | grep python
ziwenxie      8361  7557  8361  3    3 19:45 pts/0    00:00:00 python example1.py
ziwenxie      8361  7557  8362  0    3 19:45 pts/0    00:00:00 python example1.py
ziwenxie      8361  7557  8363  0    3 19:45 pts/0    00:00:00 python example1.py
Salin selepas log masuk

上面的代码我们也可以改写为进程池形式,api和线程池如出一辙,我就不罗嗦了。

# example2.py
from concurrent.futures import ProcessPoolExecutor
import time
def return_future_result(message):
    time.sleep(2)
    return message
pool = ProcessPoolExecutor(max_workers=2)
future1 = pool.submit(return_future_result, ("hello"))
future2 = pool.submit(return_future_result, ("world"))
print(future1.done())
time.sleep(3)
print(future2.done())
print(future1.result())
print(future2.result())
Salin selepas log masuk

下面是运行结果

ziwenxie :: ~ » python example2.py
False
True
hello
world
ziwenxie :: ~ » ps -eLf | grep python
ziwenxie      8560  7557  8560  3    3 19:53 pts/0    00:00:00 python example2.py
ziwenxie      8560  7557  8563  0    3 19:53 pts/0    00:00:00 python example2.py
ziwenxie      8560  7557  8564  0    3 19:53 pts/0    00:00:00 python example2.py
ziwenxie      8561  8560  8561  0    1 19:53 pts/0    00:00:00 python example2.py
ziwenxie      8562  8560  8562  0    1 19:53 pts/0    00:00:00 python example2.py
Salin selepas log masuk

使用map/wait来操作线程池/进程池

除了submit,Exectuor还为我们提供了map方法,和内建的map用法类似,下面我们通过两个例子来比较一下两者的区别。

使用submit操作回顾

# example3.py
import concurrent.futures
import urllib.request
URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/']
def load_url(url, timeout):
    with urllib.request.urlopen(url, timeout=timeout) as conn:
        return conn.read()
# We can use a with statement to ensure threads are cleaned up promptly
with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
    # Start the load operations and mark each future with its URL
    future_to_url = {executor.submit(load_url, url, 60): url for url in URLS}
    for future in concurrent.futures.as_completed(future_to_url):
        url = future_to_url[future]
        try:
            data = future.result()
        except Exception as exc:
            print('%r generated an exception: %s' % (url, exc))
        else:
            print('%r page is %d bytes' % (url, len(data)))
Salin selepas log masuk

从运行结果可以看出,as_completed不是按照URLS列表元素的顺序返回的

ziwenxie :: ~ » python example3.py
'http://example.com/' page is 1270 byte
'https://api.github.com/' page is 2039 bytes
'http://httpbin.org' page is 12150 bytes
Salin selepas log masuk

使用map

# example4.py
import concurrent.futures
import urllib.request
URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/']
def load_url(url):
    with urllib.request.urlopen(url, timeout=60) as conn:
        return conn.read()
# We can use a with statement to ensure threads are cleaned up promptly
with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
    for url, data in zip(URLS, executor.map(load_url, URLS)):
        print('%r page is %d bytes' % (url, len(data)))
Salin selepas log masuk

从运行结果可以看出,map是按照URLS列表元素的顺序返回的,并且写出的代码更加简洁直观,我们可以根据具体的需求任选一种。

ziwenxie :: ~ » python example4.py
'http://httpbin.org' page is 12150 bytes
'http://example.com/' page is 1270 bytes
'https://api.github.com/' page is 2039 bytes
Salin selepas log masuk

第三种选择wait

wait方法接会返回一个tuple(元组),tuple中包含两个set(集合),一个是completed(已完成的)另外一个是uncompleted(未完成的)。使用wait方法的一个优势就是获得更大的自由度,它接收三个参数FIRST_COMPLETED, FIRST_EXCEPTION 和ALL_COMPLETE,默认设置为ALL_COMPLETED。

我们通过下面这个例子来看一下三个参数的区别

from concurrent.futures import ThreadPoolExecutor, wait, as_completed
from time import sleep
from random import randint
def return_after_random_secs(num):
    sleep(randint(1, 5))
    return "Return of {}".format(num)
pool = ThreadPoolExecutor(5)
futures = []
for x in range(5):
    futures.append(pool.submit(return_after_random_secs, x))
print(wait(futures))
# print(wait(futures, timeout=None, return_when='FIRST_COMPLETED'))
Salin selepas log masuk

如果采用默认的ALL_COMPLETED,程序会阻塞直到线程池里面的所有任务都完成。

ziwenxie :: ~ » python example5.py
DoneAndNotDoneFutures(done={
<Future at 0x7f0b06c9bc88 state=finished returned str>,
<Future at 0x7f0b06cbaa90 state=finished returned str>,
<Future at 0x7f0b06373898 state=finished returned str>,
<Future at 0x7f0b06352ba8 state=finished returned str>,
<Future at 0x7f0b06373b00 state=finished returned str>}, not_done=set())
Salin selepas log masuk

如果采用FIRST_COMPLETED参数,程序并不会等到线程池里面所有的任务都完成。

ziwenxie :: ~ » python example5.py
DoneAndNotDoneFutures(done={
<Future at 0x7f84109edb00 state=finished returned str>,
<Future at 0x7f840e2e9320 state=finished returned str>,
<Future at 0x7f840f25ccc0 state=finished returned str>},
not_done={<Future at 0x7f840e2e9ba8 state=running>,
<Future at 0x7f840e2e9940 state=running>})
Salin selepas log masuk

思考题

写一个小程序对比multiprocessing.pool(ThreadPool)和ProcessPollExecutor(ThreadPoolExecutor)在执行效率上的差距,结合上面提到的Future思考为什么会造成这样的结果。

Atas ialah kandungan terperinci Python并发编程之线程池/进程池. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
2 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Repo: Cara menghidupkan semula rakan sepasukan
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Cara mendapatkan biji gergasi
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Bagaimana untuk menyelesaikan masalah kebenaran yang dihadapi semasa melihat versi Python di Terminal Linux? Bagaimana untuk menyelesaikan masalah kebenaran yang dihadapi semasa melihat versi Python di Terminal Linux? Apr 01, 2025 pm 05:09 PM

Penyelesaian kepada Isu Kebenaran Semasa Melihat Versi Python di Terminal Linux Apabila anda cuba melihat versi Python di Terminal Linux, masukkan Python ...

Bagaimana cara menyalin seluruh lajur satu data ke dalam data data lain dengan struktur yang berbeza di Python? Bagaimana cara menyalin seluruh lajur satu data ke dalam data data lain dengan struktur yang berbeza di Python? Apr 01, 2025 pm 11:15 PM

Apabila menggunakan Perpustakaan Pandas Python, bagaimana untuk menyalin seluruh lajur antara dua data data dengan struktur yang berbeza adalah masalah biasa. Katakan kita mempunyai dua DAT ...

Bolehkah anotasi parameter Python menggunakan rentetan? Bolehkah anotasi parameter Python menggunakan rentetan? Apr 01, 2025 pm 08:39 PM

Penggunaan alternatif anotasi parameter python Dalam pengaturcaraan Python, anotasi parameter adalah fungsi yang sangat berguna yang dapat membantu pemaju memahami dan menggunakan fungsi ...

Pembangunan Aplikasi Desktop Cross-Platform Python: Perpustakaan GUI mana yang terbaik untuk anda? Pembangunan Aplikasi Desktop Cross-Platform Python: Perpustakaan GUI mana yang terbaik untuk anda? Apr 01, 2025 pm 05:24 PM

Pilihan Perpustakaan Pembangunan Aplikasi Desktop Python Python Banyak pemaju Python ingin membangunkan aplikasi desktop yang boleh dijalankan pada kedua-dua sistem Windows dan Linux ...

Mengapa kod saya tidak dapat mendapatkan data yang dikembalikan oleh API? Bagaimana menyelesaikan masalah ini? Mengapa kod saya tidak dapat mendapatkan data yang dikembalikan oleh API? Bagaimana menyelesaikan masalah ini? Apr 01, 2025 pm 08:09 PM

Mengapa kod saya tidak dapat mendapatkan data yang dikembalikan oleh API? Dalam pengaturcaraan, kita sering menghadapi masalah mengembalikan nilai null apabila panggilan API, yang bukan sahaja mengelirukan ...

Bagaimanakah uvicorn terus mendengar permintaan http tanpa serving_forever ()? Bagaimanakah uvicorn terus mendengar permintaan http tanpa serving_forever ()? Apr 01, 2025 pm 10:51 PM

Bagaimanakah Uvicorn terus mendengar permintaan HTTP? Uvicorn adalah pelayan web ringan berdasarkan ASGI. Salah satu fungsi terasnya ialah mendengar permintaan HTTP dan teruskan ...

Bagaimanakah skrip Python jelas output ke kedudukan kursor di lokasi tertentu? Bagaimanakah skrip Python jelas output ke kedudukan kursor di lokasi tertentu? Apr 01, 2025 pm 11:30 PM

Bagaimanakah skrip Python jelas output ke kedudukan kursor di lokasi tertentu? Semasa menulis skrip python, adalah perkara biasa untuk membersihkan output sebelumnya ke kedudukan kursor ...

Adakah Google dan AWS menyediakan sumber imej Pypi awam? Adakah Google dan AWS menyediakan sumber imej Pypi awam? Apr 01, 2025 pm 05:15 PM

Ramai pemaju bergantung kepada PYPI (PythonPackageIndex) ...

See all articles