Rumah > pembangunan bahagian belakang > Tutorial Python > Python集合类型(list tuple dict set generator)图文详解

Python集合类型(list tuple dict set generator)图文详解

高洛峰
Lepaskan: 2017-03-20 10:24:00
asal
1975 orang telah melayarinya

Python内嵌的集合类型有list、tuple、set、dict。

列表list:看似数组,但比数组强大,支持索引、切片、查找、增加等功能。

元组tuple:功能跟list差不多,但一旦生成,长度及元素都不可变(元素的元素还是可变),似乎就是一更轻量级、安全的list。

字典dict:键值对结构哈希表,跟哈希表的性质一样,key无序且不重复,增删改方便快捷。

set:无序且不重复的集合,就是一个只有键没有值的dict,Java的HashSet就是采用HashMap实现,但愿python不会是这样,毕竟set不需要value,省去了很多指针。

 

Generator:

称之为生成器,或者列表推导式,是python中有一个特殊的数据类型,实际上并不是一个数据结构,只包括算法和暂存的状态,并且具有迭代的功能。 

先看看它们的内存使用情况,分别用生成器生成100000个元素的set, dict, generator, tuple, list。消耗的内存dict, set, list, tuple依次减少,生成的对象大小也是一样。由于generator并不生成数据表,所以不需要消耗内存:

import sys
from memory_profiler import profile

@profile
def create_data(data_size):
    data_generator = (x for x in xrange(data_size))
    data_set = {x for x in xrange(data_size)}
    data_dict = {x:None for x in xrange(data_size)}
    data_tuple = tuple(x for x in xrange(data_size))
    data_list = [x for x in xrange(data_size)]
    return data_set, data_dict, data_generator, data_tuple, data_list

data_size = 100000
for data in create_data(data_size):
    print data.__class__, sys.getsizeof(data)

Line #    Mem usage    Increment   Line Contents
================================================
    14.6 MiB      0.0 MiB   @profile
                            def create_data(data_size):
    14.7 MiB      0.0 MiB       data_generator = (x for x in xrange(data_size))
    21.4 MiB      6.7 MiB       data_set = {x for x in xrange(data_size)}
    29.8 MiB      8.5 MiB       data_dict = {x:None for x in xrange(data_size)}
    33.4 MiB      3.6 MiB       data_tuple = tuple(x for x in xrange(data_size))
    38.2 MiB      4.8 MiB       data_list = [x for x in xrange(data_size)]
    38.2 MiB      0.0 MiB       return data_set, data_dict, data_generator, data_tuple, data_list
 
<type &#39;set&#39;> 4194528
<type &#39;dict&#39;> 6291728
<type &#39;generator&#39;> 72
<type &#39;tuple&#39;> 800048
<type &#39;list&#39;> 824464
Salin selepas log masuk

再看看查找性能,dict,set是常数查找时间(O(1)),list、tuple是线性查找时间(O(n)),用生成器生成指定大小元素的对象,用随机生成的数字去查找:

import time
import sys
import random
from memory_profiler import profile

def create_data(data_size):
    data_set = {x for x in xrange(data_size)}
    data_dict = {x:None for x in xrange(data_size)}
    data_tuple = tuple(x for x in xrange(data_size))
    data_list = [x for x in xrange(data_size)]
    return data_set, data_dict, data_tuple, data_list

def cost_time(func):
    def cost(*args, **kwargs):
        start = time.time()
        r = func(*args, **kwargs)
        cost = time.time() - start
        print &#39;find in %s cost time %s&#39; % (r, cost)
        return r, cost  #返回数据的类型和方法执行消耗的时间
    return cost

@cost_time
def test_find(test_data, data):
    for d in test_data:
        if d in data:
            pass
    return data.__class__.__name__

data_size = 100
test_size = 10000000
test_data = [random.randint(0, data_size) for x in xrange(test_size)]
#print test_data
for data in create_data(data_size):
    test_find(test_data, data)

输出:
----------------------------------------------
find in <type &#39;set&#39;> cost time 0.47200012207
find in <type &#39;dict&#39;> cost time 0.429999828339
find in <type &#39;tuple&#39;> cost time 5.36500000954
find in <type &#39;list&#39;> cost time 5.53399991989
Salin selepas log masuk

100个元素的大小的集合,分别查找1000W次,差距非常明显。不过这些随机数,都是能在集合中查找得到。修改一下随机数方式,生成一半是能查找得到,一半是查找不到的。从打印信息可以看出在有一半最坏查找例子的情况下,list、tuple表现得更差了。

def randint(index, data_size):
    return random.randint(0, data_size) if (x % 2) == 0 else random.randint(data_size, data_size * 2)

test_data = [randint(x, data_size) for x in xrange(test_size)]

输出:
----------------------------------------------
find in <type &#39;set&#39;> cost time 0.450000047684
find in <type &#39;dict&#39;> cost time 0.397000074387
find in <type &#39;tuple&#39;> cost time 7.83299994469
find in <type &#39;list&#39;> cost time 8.27800011635
Salin selepas log masuk

元素的个数从10增长至500,统计每次查找10W次的时间,用图拟合时间消耗的曲线,结果如下图,结果证明dict, set不管元素多少,一直都是常数查找时间,dict、tuple随着元素增长,呈现线性增长时间:

import matplotlib.pyplot as plot
from numpy import *

data_size = array([x for x in xrange(10, 500, 10)])
test_size = 100000
cost_result = {}
for size in data_size:
    test_data = [randint(x, size) for x in xrange(test_size)]
    for data in create_data(size):
        name, cost = test_find(test_data, data) #装饰器函数返回函数的执行时间
        cost_result.setdefault(name, []).append(cost)

plot.figure(figsize=(10, 6))
xline = data_size
for data_type, result in cost_result.items():
    yline = array(result)
    plot.plot(xline, yline, label=data_type)

plot.ylabel(&#39;Time spend&#39;)
plot.xlabel(&#39;Find times&#39;)

plot.grid()

plot.legend()
plot.show()
Salin selepas log masuk

Python集合类型(list tuple dict set generator)图文详解

迭代的时间,区别很微弱,dict、set要略微消耗时间多一点:

@cost_time
def test_iter(data):
    for d in data:
        pass
    return data.__class__ .__name__

data_size = array([x for x in xrange(1, 500000, 1000)])
cost_result = {}
for size in data_size:
    for data in create_data(size):
        name, cost = test_iter(data)
        cost_result.setdefault(name, []).append(cost)

#拟合曲线图
plot.figure(figsize=(10, 6))
xline = data_size
for data_type, result in cost_result.items():
    yline = array(result)
    plot.plot(xline, yline, label=data_type)  

plot.ylabel(&#39;Time spend&#39;)
plot.xlabel(&#39;Iter times&#39;)

plot.grid()

plot.legend()
plot.show()
Salin selepas log masuk

Python集合类型(list tuple dict set generator)图文详解

删除元素消耗时间图示如下,随机删除1000个元素,tuple类型不能删除元素,所以不做比较:


Python集合类型(list tuple dict set generator)图文详解

随机删除一半的元素,图形就呈指数时间(O(n2))增长了:

Python集合类型(list tuple dict set generator)图文详解

添加元素消耗的时间图示如下,统计以10000为增量大小的元素个数的添加时间,都是线性增长时间,看不出有什么差别,tuple类型不能添加新的元素,所以不做比较:

@cost_time
def test_dict_add(test_data, data):
    for d in test_data:
        data[d] = None
    return data.__class__ .__name__

@cost_time
def test_set_add(test_data, data):
    for d in test_data:
        data.add(d)
    return data.__class__ .__name__

@cost_time
def test_list_add(test_data, data):
    for d in test_data:
        data.append(d)
    return data.__class__ .__name__

#初始化数据,指定每种类型对应它添加元素的方法
def init_data():
    test_data = {
        &#39;list&#39;: (list(), test_list_add),
        &#39;set&#39;: (set(), test_set_add),
        &#39;dict&#39;: (dict(), test_dict_add)
    }
    return test_data

#每次检测10000增量大小的数据的添加时间
data_size = array([x for x in xrange(10000, 1000000, 10000)])
cost_result = {}
for size in data_size:
    test_data = [x for x in xrange(size)]
    for data_type, (data, add) in init_data().items():
        name, cost = add(test_data, data) #返回方法的执行时间
        cost_result.setdefault(data_type, []).append(cost)

plot.figure(figsize=(10, 6))
xline = data_size
for data_type, result in cost_result.items():
    yline = array(result)
    plot.plot(xline, yline, label=data_type)

plot.ylabel(&#39;Time spend&#39;)
plot.xlabel(&#39;Add times&#39;)

plot.grid()

plot.legend()
plot.show()
Salin selepas log masuk

Python集合类型(list tuple dict set generator)图文详解

Atas ialah kandungan terperinci Python集合类型(list tuple dict set generator)图文详解. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Label berkaitan:
sumber:php.cn
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan