Rumah > pembangunan bahagian belakang > Tutorial Python > 通过pandas库对cdn日志实现分析的python代码实例

通过pandas库对cdn日志实现分析的python代码实例

Y2J
Lepaskan: 2017-05-05 16:50:45
asal
1764 orang telah melayarinya

这篇文章主要介绍了利用Python中的pandas库进行cdn日志分析的相关资料,文中分享了pandas对cdn日志分析的完整示例代码,然后详细介绍了关于pandas库的相关内容,需要的朋友可以参考借鉴,下面来一起看看吧。

前言

最近工作工作中遇到一个需求,是要根据CDN日志过滤一些数据,例如流量、状态码统计,TOP IP、URL、UA、Referer等。以前都是用 bash shell 实现的,但是当日志量较大,日志文件数G、行数达数千万亿级时,通过 shell 处理有些力不从心,处理时间过长。于是研究了下Python pandas这个数据处理库的使用。一千万行日志,处理完成在40s左右。

代码

#!/usr/bin/python
# -*- coding: utf-8 -*-
# sudo pip install pandas
author = 'Loya Chen'
import sys
import pandas as pd
from collections import OrderedDict
"""
Description: This script is used to analyse qiniu cdn log.
================================================================================
日志格式
IP - ResponseTime [time +0800] "Method URL HTTP/1.1" code size "referer" "UA"
================================================================================
日志示例
 [0] [1][2]  [3]  [4]   [5]
101.226.66.179 - 68 [16/Nov/2016:04:36:40 +0800] "GET http://www.qn.com/1.jpg -" 
[6] [7] [8]    [9]
200 502 "-" "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)"
================================================================================
"""
if len(sys.argv) != 2:
 print('Usage:', sys.argv[0], 'file_of_log')
 exit() 
else:
 log_file = sys.argv[1] 
# 需统计字段对应的日志位置 
ip  = 0
url  = 5
status_code = 6
size = 7
referer = 8
ua  = 9
# 将日志读入DataFrame
reader = pd.read_table(log_file, sep=' ', names=[i for i in range(10)], iterator=True)
loop = True
chunkSize = 10000000
chunks = []
while loop:
 try:
 chunk = reader.get_chunk(chunkSize)
 chunks.append(chunk)
 except StopIteration:
 #Iteration is stopped.
 loop = False
df = pd.concat(chunks, ignore_index=True)
byte_sum = df[size].sum()        #流量统计
top_status_code = pd.DataFrame(df[6].value_counts())      #状态码统计
top_ip  = df[ip].value_counts().head(10)      #TOP IP
top_referer = df[referer].value_counts().head(10)      #TOP Referer
top_ua  = df[ua].value_counts().head(10)      #TOP User-Agent
top_status_code['persent'] = pd.DataFrame(top_status_code/top_status_code.sum()*100)
top_url  = df[url].value_counts().head(10)      #TOP URL
top_url_byte = df[[url,size]].groupby(url).sum().apply(lambda x:x.astype(float)/1024/1024) \
   .round(decimals = 3).sort_values(by=[size], ascending=False)[size].head(10) #请求流量最大的URL
top_ip_byte = df[[ip,size]].groupby(ip).sum().apply(lambda x:x.astype(float)/1024/1024) \
   .round(decimals = 3).sort_values(by=[size], ascending=False)[size].head(10) #请求流量最多的IP
# 将结果有序存入字典
result = OrderedDict([("流量总计[单位:GB]:"   , byte_sum/1024/1024/1024),
   ("状态码统计[次数|百分比]:"  , top_status_code),
   ("IP TOP 10:"    , top_ip),
   ("Referer TOP 10:"   , top_referer),
   ("UA TOP 10:"    , top_ua),
   ("URL TOP 10:"   , top_url),
   ("请求流量最大的URL TOP 10[单位:MB]:" , top_url_byte), 
   ("请求流量最大的IP TOP 10[单位:MB]:" , top_ip_byte)
])
# 输出结果
for k,v in result.items():
 print(k)
 print(v)
 print('='*80)
Salin selepas log masuk

pandas 学习笔记

Pandas 中有两种基本的数据结构,Series 和 Dataframe。 Series 是一种类似于一维数组对象,由一组数据和索引组成。 Dataframe 是一个表格型的数据结构,既有行索引也有列索引。

from pandas import Series, DataFrame
import pandas as pd
Salin selepas log masuk

Series

In [1]: obj = Series([4, 7, -5, 3])
In [2]: obj
Out[2]: 
0 4
1 7
2 -5
3 3
Salin selepas log masuk

Series的字符串表现形式为:索引在左边,值在右边。没有指定索引时,会自动创建一个0到N-1(N为数据的长度)的整数型索引。可以通过Series的values和index属性获取其数组表示形式和索引对象:

In [3]: obj.values
Out[3]: array([ 4, 7, -5, 3])
In [4]: obj.index
Out[4]: RangeIndex(start=0, stop=4, step=1)
Salin selepas log masuk

通常创建Series时会指定索引:

In [5]: obj2 = Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c'])
In [6]: obj2
Out[6]: 
d 4
b 7
a -5
c 3
Salin selepas log masuk

通过索引获取Series中的单个或一组值:

In [7]: obj2['a']
Out[7]: -5
In [8]: obj2[['c','d']]
Out[8]: 
c 3
d 4
Salin selepas log masuk

排序

In [9]: obj2.sort_index()
Out[9]: 
a -5
b 7
c 3
d 4
In [10]: obj2.sort_values()
Out[10]: 
a -5
c 3
d 4
b 7
Salin selepas log masuk

筛选运算

In [11]: obj2[obj2 > 0]
Out[11]: 
d 4
b 7
c 3
In [12]: obj2 * 2
Out[12]: 
d 8
b 14
a -10
c 6
Salin selepas log masuk

成员

In [13]: 'b' in obj2
Out[13]: True
In [14]: 'e' in obj2
Out[14]: False
Salin selepas log masuk

通过字典创建Series

In [15]: sdata = {'Shanghai':35000, 'Beijing':40000, 'Nanjing':26000, 'Hangzhou':30000}
In [16]: obj3 = Series(sdata)
In [17]: obj3
Out[17]: 
Beijing 40000
Hangzhou 30000
Nanjing 26000
Shanghai 35000
Salin selepas log masuk

如果只传入一个字典,则结果Series中的索引就是原字典的键(有序排列)

In [18]: states = ['Beijing', 'Hangzhou', 'Shanghai', 'Suzhou']
In [19]: obj4 = Series(sdata, index=states)
In [20]: obj4
Out[20]: 
Beijing 40000.0
Hangzhou 30000.0
Shanghai 35000.0
Suzhou  NaN
Salin selepas log masuk

当指定index时,sdata中跟states索引相匹配的3个值会被找出并放到响应的位置上,但由于‘Suzhou'所对应的sdata值找不到,所以其结果为NaN(not a number),pandas中用于表示缺失或NA值

pandas的isnull和notnull函数可以用于检测缺失数据:

In [21]: pd.isnull(obj4)
Out[21]: 
Beijing False
Hangzhou False
Shanghai False
Suzhou True
In [22]: pd.notnull(obj4)
Out[22]: 
Beijing True
Hangzhou True
Shanghai True
Suzhou False
Salin selepas log masuk

Series也有类似的实例方法

In [23]: obj4.isnull()
Out[23]: 
Beijing False
Hangzhou False
Shanghai False
Suzhou True
Salin selepas log masuk

Series的一个重要功能是,在数据运算中,自动对齐不同索引的数据

In [24]: obj3
Out[24]: 
Beijing 40000
Hangzhou 30000
Nanjing 26000
Shanghai 35000
In [25]: obj4
Out[25]: 
Beijing 40000.0
Hangzhou 30000.0
Shanghai 35000.0
Suzhou  NaN
In [26]: obj3 + obj4
Out[26]: 
Beijing 80000.0
Hangzhou 60000.0
Nanjing  NaN
Shanghai 70000.0
Suzhou  NaN
Salin selepas log masuk

Series的索引可以通过复制的方式就地修改

In [27]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']
In [28]: obj
Out[28]: 
Bob 4
Steve 7
Jeff -5
Ryan 3
Salin selepas log masuk

DataFrame

pandas读取文件

In [29]: df = pd.read_table('pandas_test.txt',sep=' ', names=['name', 'age'])
In [30]: df
Out[30]: 
 name age
0 Bob 26
1 Loya 22
2 Denny 20
3 Mars 25
Salin selepas log masuk

DataFrame列选取

df[name]
Salin selepas log masuk
In [31]: df['name']
Out[31]: 
0 Bob
1 Loya
2 Denny
3 Mars
Name: name, dtype: object
Salin selepas log masuk

DataFrame行选取

df.iloc[0,:] #第一个参数是第几行,第二个参数是列。这里指第0行全部列
df.iloc[:,0] #全部行,第0列
Salin selepas log masuk
In [32]: df.iloc[0,:]
Out[32]: 
name Bob
age 26
Name: 0, dtype: object
In [33]: df.iloc[:,0]
Out[33]: 
0 Bob
1 Loya
2 Denny
3 Mars
Name: name, dtype: object
Salin selepas log masuk

获取一个元素,可以通过iloc,更快的方式是iat

In [34]: df.iloc[1,1]
Out[34]: 22
In [35]: df.iat[1,1]
Out[35]: 22
Salin selepas log masuk

DataFrame块选取

In [36]: df.loc[1:2,['name','age']]
Out[36]: 
 name age
1 Loya 22
2 Denny 20
Salin selepas log masuk

根据条件过滤行

在方括号中加入判断条件来过滤行,条件必需返回 True 或者 False

In [37]: df[(df.index >= 1) & (df.index <= 3)]
Out[37]: 
 name age city
1 Loya 22 Shanghai
2 Denny 20 Hangzhou
3 Mars 25 Nanjing
In [38]: df[df[&#39;age&#39;] > 22]
Out[38]: 
 name age city
0 Bob 26 Beijing
3 Mars 25 Nanjing
Salin selepas log masuk

增加列

In [39]: df[&#39;city&#39;] = [&#39;Beijing&#39;, &#39;Shanghai&#39;, &#39;Hangzhou&#39;, &#39;Nanjing&#39;]
In [40]: df
Out[40]: 
 name age city
0 Bob 26 Beijing
1 Loya 22 Shanghai
2 Denny 20 Hangzhou
3 Mars 25 Nanjing
Salin selepas log masuk

排序

按指定列排序

In [41]: df.sort_values(by=&#39;age&#39;)
Out[41]: 
 name age city
2 Denny 20 Hangzhou
1 Loya 22 Shanghai
3 Mars 25 Nanjing
0 Bob 26 Beijing
Salin selepas log masuk
# 引入numpy 构建 DataFrame
import numpy as np
Salin selepas log masuk
In [42]: df = pd.DataFrame(np.arange(8).reshape((2, 4)), index=[&#39;three&#39;, &#39;one&#39;], columns=[&#39;d&#39;, &#39;a&#39;, &#39;b&#39;, &#39;c&#39;])
In [43]: df
Out[43]: 
 d a b c
three 0 1 2 3
one 4 5 6 7
Salin selepas log masuk
# 以索引排序
In [44]: df.sort_index()
Out[44]: 
 d a b c
one 4 5 6 7
three 0 1 2 3
In [45]: df.sort_index(axis=1)
Out[45]: 
 a b c d
three 1 2 3 0
one 5 6 7 4
# 降序
In [46]: df.sort_index(axis=1, ascending=False)
Out[46]: 
 d c b a
three 0 3 2 1
one 4 7 6 5
Salin selepas log masuk

查看

# 查看表头5行 
df.head(5)
# 查看表末5行
df.tail(5) 
# 查看列的名字
In [47]: df.columns
Out[47]: Index([&#39;name&#39;, &#39;age&#39;, &#39;city&#39;], dtype=&#39;object&#39;)
# 查看表格当前的值
In [48]: df.values
Out[48]: 
array([[&#39;Bob&#39;, 26, &#39;Beijing&#39;],
 [&#39;Loya&#39;, 22, &#39;Shanghai&#39;],
 [&#39;Denny&#39;, 20, &#39;Hangzhou&#39;],
 [&#39;Mars&#39;, 25, &#39;Nanjing&#39;]], dtype=object)
Salin selepas log masuk

转置

df.T
Out[49]: 
  0  1  2 3
name Bob Loya Denny Mars
age 26 22 20 25
city Beijing Shanghai Hangzhou Nanjing
Salin selepas log masuk

使用isin

In [50]: df2 = df.copy()
In [51]: df2[df2[&#39;city&#39;].isin([&#39;Shanghai&#39;,&#39;Nanjing&#39;])]
Out[52]: 
 name age city
1 Loya 22 Shanghai
3 Mars 25 Nanjing
Salin selepas log masuk

运算操作:

In [53]: df = pd.DataFrame([[1.4, np.nan], [7.1, -4.5], [np.nan, np.nan], [0.75, -1.3]], 
 ...:    index=[&#39;a&#39;, &#39;b&#39;, &#39;c&#39;, &#39;d&#39;], columns=[&#39;one&#39;, &#39;two&#39;])
In [54]: df
Out[54]: 
 one two
a 1.40 NaN
b 7.10 -4.5
c NaN NaN
d 0.75 -1.3
Salin selepas log masuk
#按列求和
In [55]: df.sum()
Out[55]: 
one 9.25
two -5.80
# 按行求和
In [56]: df.sum(axis=1)
Out[56]: 
a 1.40
b 2.60
c NaN
d -0.55
Salin selepas log masuk

group

group 指的如下几步:

  • Splitting the data into groups based on some criteria

  • Applying a function to each group independently

  • Combining the results into a data structure

See the Grouping section

In [57]: df = pd.DataFrame({&#39;A&#39; : [&#39;foo&#39;, &#39;bar&#39;, &#39;foo&#39;, &#39;bar&#39;,
 ....:    &#39;foo&#39;, &#39;bar&#39;, &#39;foo&#39;, &#39;foo&#39;],
 ....:   &#39;B&#39; : [&#39;one&#39;, &#39;one&#39;, &#39;two&#39;, &#39;three&#39;,
 ....:    &#39;two&#39;, &#39;two&#39;, &#39;one&#39;, &#39;three&#39;],
 ....:   &#39;C&#39; : np.random.randn(8),
 ....:   &#39;D&#39; : np.random.randn(8)})
 ....: 
In [58]: df
Out[58]: 
 A B  C  D
0 foo one -1.202872 -0.055224
1 bar one -1.814470 2.395985
2 foo two 1.018601 1.552825
3 bar three -0.595447 0.166599
4 foo two 1.395433 0.047609
5 bar two -0.392670 -0.136473
6 foo one 0.007207 -0.561757
7 foo three 1.928123 -1.623033
Salin selepas log masuk

group一下,然后应用sum函数

In [59]: df.groupby(&#39;A&#39;).sum()
Out[59]: 
  C D
A   
bar -2.802588 2.42611
foo 3.146492 -0.63958
In [60]: df.groupby([&#39;A&#39;,&#39;B&#39;]).sum()
Out[60]: 
   C  D
A B   
bar one -1.814470 2.395985
 three -0.595447 0.166599
 two -0.392670 -0.136473
foo one -1.195665 -0.616981
 three 1.928123 -1.623033
 two 2.414034 1.600434
Salin selepas log masuk

【相关推荐】

1. Python免费视频教程 

2. Python基础入门手册

3. 极客学院Python视频教程

Atas ialah kandungan terperinci 通过pandas库对cdn日志实现分析的python代码实例. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Label berkaitan:
sumber:php.cn
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan