spring boot 1.5.4入门实例详解
1.配置maven文件pom.xml
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.hdwang</groupId> <artifactId>spring-boot-test</artifactId> <version>1.0-SNAPSHOT</version> <name>spring-boot-test</name> <description>project for test Spring Boot</description> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <java.version>1.8</java.version> </properties> <!-- Inherit defaults from Spring Boot --> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>1.5.4.RELEASE</version> <relativePath/> </parent> <dependencies> <!-- Add typical dependencies for a web application --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-freemarker</artifactId> </dependency> <!-- auto redeploy --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-devtools</artifactId> <optional>true</optional> </dependency> <!-- Package as an executable jar --> <build> <plugins> <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> </plugin> </plugins> </build> </project>
2.文件结构(static/templates/application.properties/logback.xml的名称都是约定好了的,只可以使用某几个名称,具体参考spring boot官方文档,下面的名称是其中一种配置方式)
3.建立启动类(放在顶层,子层(下级文件夹)的类方可被扫描注入)
@SpringBootApplication public class Application { /** * main function * @param args params */ public static void main(String[] args){ SpringApplication.run(Application.class,args); } }
4.建立controller(在Application类的下级目录中)
@Controller @RequestMapping("/common")public class Common { @Value("${msg:Welcome!}")private String msg;/** * get a page * @return a page with name called return value */@RequestMapping("login")public String getLoginPage(ModelMap map){ map.put("welcomeMsg",this.msg);return "login"; } }
5.建立网页模板login.ftl(freemarker必须使用ftl后缀,被这个坑了好久!js/css啥的都放在相应文件夹下,注意访问路径中不带/static,也被这个坑了好久!)
<!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <title>login</title> <link href="/css/home.css?1.1.11" rel="stylesheet" type="text/css" /> <script type="text/javascript" src="/js/jquery-2.0.3.min.js?1.1.11"></script> <script type="text/javascript" src="/js/home.js?1.1.11"></script> </head> <body> <h1>login page</h1> <h2>${welcomeMsg}</h2> <form> <div> <label>用户名:<input type="text" id="username"/></label> </div> <div> <label>密码:<input type="password"/></label> </div> <div> <input type="submit" value="提交"/> <input type="reset" value="重置" /> </div> </form> </body> </html>
6.应用配置文件编写
新建application.properties文件并添加以下内容
msg=Ladies and gentleman,Welcome!
7.启动运行
浏览器中访问:http://localhost:8080/common/login
8.部署
mvn package 打个包
java -jar xxx.jar 运行这个包即可
Atas ialah kandungan terperinci spring boot 1.5.4入门实例详解. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Penyebaran bukan sahaja boleh meniru lebih baik, tetapi juga "mencipta". Model resapan (DiffusionModel) ialah model penjanaan imej. Berbanding dengan algoritma yang terkenal seperti GAN dan VAE dalam bidang AI, model resapan mengambil pendekatan yang berbeza. Idea utamanya ialah proses menambah hingar pada imej dan kemudian secara beransur-ansur menolaknya. Cara mengecilkan dan memulihkan imej asal adalah bahagian teras algoritma. Algoritma akhir mampu menghasilkan imej daripada imej bising rawak. Dalam beberapa tahun kebelakangan ini, pertumbuhan luar biasa AI generatif telah membolehkan banyak aplikasi menarik dalam penjanaan teks ke imej, penjanaan video dan banyak lagi. Prinsip asas di sebalik alat generatif ini ialah konsep resapan, mekanisme pensampelan khas yang mengatasi batasan kaedah sebelumnya.

Kimi: Hanya dalam satu ayat, dalam sepuluh saat sahaja, PPT akan siap. PPT sangat menjengkelkan! Untuk mengadakan mesyuarat, anda perlu mempunyai PPT; untuk menulis laporan mingguan, anda perlu mempunyai PPT untuk membuat pelaburan, anda perlu menunjukkan PPT walaupun anda menuduh seseorang menipu, anda perlu menghantar PPT. Kolej lebih seperti belajar jurusan PPT Anda menonton PPT di dalam kelas dan melakukan PPT selepas kelas. Mungkin, apabila Dennis Austin mencipta PPT 37 tahun lalu, dia tidak menyangka satu hari nanti PPT akan berleluasa. Bercakap tentang pengalaman sukar kami membuat PPT membuatkan kami menitiskan air mata. "Ia mengambil masa tiga bulan untuk membuat PPT lebih daripada 20 muka surat, dan saya menyemaknya berpuluh-puluh kali. Saya rasa ingin muntah apabila saya melihat PPT itu." ialah PPT." Jika anda mengadakan mesyuarat dadakan, anda harus melakukannya

Sebagai peneraju industri, Spring+AI menyediakan penyelesaian terkemuka untuk pelbagai industri melalui API yang berkuasa, fleksibel dan fungsi lanjutannya. Dalam topik ini, kami akan menyelidiki contoh aplikasi Spring+AI dalam pelbagai bidang Setiap kes akan menunjukkan cara Spring+AI memenuhi keperluan khusus, mencapai matlamat dan meluaskan LESSONSLEARNED ini kepada rangkaian aplikasi yang lebih luas. Saya harap topik ini dapat memberi inspirasi kepada anda untuk memahami dan menggunakan kemungkinan Spring+AI yang tidak terhingga dengan lebih mendalam. Rangka kerja Spring mempunyai sejarah lebih daripada 20 tahun dalam bidang pembangunan perisian, dan sudah 10 tahun sejak versi Spring Boot 1.0 dikeluarkan. Sekarang, tiada siapa boleh mempertikaikan Spring itu

Pada awal pagi 20 Jun, waktu Beijing, CVPR2024, persidangan penglihatan komputer antarabangsa teratas yang diadakan di Seattle, secara rasmi mengumumkan kertas kerja terbaik dan anugerah lain. Pada tahun ini, sebanyak 10 kertas memenangi anugerah, termasuk 2 kertas terbaik dan 2 kertas pelajar terbaik Selain itu, terdapat 2 pencalonan kertas terbaik dan 4 pencalonan kertas pelajar terbaik. Persidangan teratas dalam bidang visi komputer (CV) ialah CVPR, yang menarik sejumlah besar institusi penyelidikan dan universiti setiap tahun. Mengikut statistik, sebanyak 11,532 kertas telah diserahkan tahun ini, 2,719 daripadanya diterima, dengan kadar penerimaan 23.6%. Menurut analisis statistik data CVPR2024 Institut Teknologi Georgia, dari perspektif topik penyelidikan, bilangan kertas terbesar ialah sintesis dan penjanaan imej dan video (Imageandvideosyn

Kami tahu bahawa LLM dilatih pada kelompok komputer berskala besar menggunakan data besar-besaran Tapak ini telah memperkenalkan banyak kaedah dan teknologi yang digunakan untuk membantu dan menambah baik proses latihan LLM. Hari ini, perkara yang ingin kami kongsikan ialah artikel yang mendalami teknologi asas dan memperkenalkan cara menukar sekumpulan "logam kosong" tanpa sistem pengendalian pun menjadi gugusan komputer untuk latihan LLM. Artikel ini datang daripada Imbue, sebuah permulaan AI yang berusaha untuk mencapai kecerdasan am dengan memahami cara mesin berfikir. Sudah tentu, mengubah sekumpulan "logam kosong" tanpa sistem pengendalian menjadi gugusan komputer untuk latihan LLM bukanlah proses yang mudah, penuh dengan penerokaan dan percubaan dan kesilapan, tetapi Imbue akhirnya berjaya melatih LLM dengan 70 bilion parameter proses terkumpul

Editor Laporan Kuasa Mesin: Yang Wen Gelombang kecerdasan buatan yang diwakili oleh model besar dan AIGC telah mengubah cara kita hidup dan bekerja secara senyap-senyap, tetapi kebanyakan orang masih tidak tahu cara menggunakannya. Oleh itu, kami telah melancarkan lajur "AI dalam Penggunaan" untuk memperkenalkan secara terperinci cara menggunakan AI melalui kes penggunaan kecerdasan buatan yang intuitif, menarik dan padat serta merangsang pemikiran semua orang. Kami juga mengalu-alukan pembaca untuk menyerahkan kes penggunaan yang inovatif dan praktikal. Pautan video: https://mp.weixin.qq.com/s/2hX_i7li3RqdE4u016yGhQ Baru-baru ini, vlog kehidupan seorang gadis yang tinggal bersendirian menjadi popular di Xiaohongshu. Animasi gaya ilustrasi, ditambah dengan beberapa perkataan penyembuhan, boleh diambil dengan mudah dalam beberapa hari sahaja.

Tajuk: Wajib dibaca untuk pemula teknikal: Analisis kesukaran bahasa C dan Python, memerlukan contoh kod khusus Dalam era digital hari ini, teknologi pengaturcaraan telah menjadi keupayaan yang semakin penting. Sama ada anda ingin bekerja dalam bidang seperti pembangunan perisian, analisis data, kecerdasan buatan, atau hanya belajar pengaturcaraan kerana minat, memilih bahasa pengaturcaraan yang sesuai ialah langkah pertama. Di antara banyak bahasa pengaturcaraan, bahasa C dan Python adalah dua bahasa pengaturcaraan yang digunakan secara meluas, masing-masing mempunyai ciri tersendiri. Artikel ini akan menganalisis tahap kesukaran bahasa C dan Python

Retrieval-augmented generation (RAG) ialah teknik yang menggunakan perolehan semula untuk meningkatkan model bahasa. Secara khusus, sebelum model bahasa menjana jawapan, ia mendapatkan semula maklumat yang berkaitan daripada pangkalan data dokumen yang luas dan kemudian menggunakan maklumat ini untuk membimbing proses penjanaan. Teknologi ini boleh meningkatkan ketepatan dan perkaitan kandungan dengan banyak, mengurangkan masalah halusinasi dengan berkesan, meningkatkan kelajuan kemas kini pengetahuan, dan meningkatkan kebolehkesanan penjanaan kandungan. RAG sudah pasti salah satu bidang penyelidikan kecerdasan buatan yang paling menarik. Untuk butiran lanjut tentang RAG, sila rujuk artikel lajur di tapak ini "Apakah perkembangan baharu dalam RAG, yang pakar dalam menebus kekurangan model besar?" Ulasan ini menerangkannya dengan jelas." Tetapi RAG tidak sempurna, dan pengguna sering menghadapi beberapa "titik kesakitan" apabila menggunakannya. Baru-baru ini, penyelesaian AI generatif termaju NVIDIA
