java并发编程(8)原子变量和非阻塞的同步机制
原子变量和非阻塞的同步机制
一、锁的劣势
1.在多线程下:锁的挂起和恢复等过程存在着很大的开销(及时现代的jvm会判断何时使用挂起,何时自旋等待)
2.volatile:轻量级别的同步机制,但是不能用于构建原子复合操作
因此:需要有一种方式,在管理线程之间的竞争时有一种粒度更细的方式,类似与volatile的机制,同时还要支持原子更新操作
二、CAS
独占锁是一种悲观的技术--它假设最坏的情况,所以每个线程是独占的
而CAS比较并交换:compareAndSwap/Set(A,B):我们认为内存处值是A,如果是A,将其修改为B,否则不进行操作;返回内存处的原始值或是否修改成功
如:模拟CAS操作
//模拟的CASpublic class SimulatedCAS {private int value;public synchronized int get() {return value; }//CAS操作public synchronized int compareAndSwap(int expectedValue, int newValue) {int oldValue = value;if (oldValue == expectedValue) { value = newValue; }return oldValue; }public synchronized boolean compareAndSet(int expectedValue, int newValue) {return (expectedValue == compareAndSwap(expectedValue, newValue)); } }//典型使用场景public class CasCounter {private SimulatedCAS value;public int getValue() {return value.get(); }public int increment() {int v;do { v = value.get(); } while { (v != value.compareAndSwap(v, v + 1)); }return v + 1; } }
JAVA提供了CAS的操作
原子状态类:AtomicXXX的CAS方法
JAVA7/8:对Map的操作:putIfAbsent、computerIfAbsent、computerIfPresent.........
三、原子变量类
AtomicRefence原子更新对象,可以是自定义的对象;如:
public class CasNumberRange {private static class IntPair {// INVARIANT: lower <= upperfinal int lower; //将值定义为不可变域final int upper; //将值定义为不可变域public IntPair(int lower, int upper) {this.lower = lower;this.upper = upper; } }private final AtomicReference<IntPair> values = new AtomicReference<IntPair>(new IntPair(0, 0)); //封装对象public int getLower() {return values.get().lower; }public int getUpper() {return values.get().upper; }public void setLower(int i) {while (true) { IntPair oldv = values.get();if (i > oldv.upper) {throw new IllegalArgumentException("Can't set lower to " + i + " > upper"); } IntPair newv = new IntPair(i, oldv.upper); //属性为不可变域,则每次更新新建对象if (values.compareAndSet(oldv, newv)) { //原子更新,如果在过程中有线程修改了,则其他线程不会更新成功,因为oldv与内存处值就不同了return; } } }//同上public void setUpper(int i) {while (true) { IntPair oldv = values.get();if (i < oldv.lower)throw new IllegalArgumentException("Can't set upper to " + i + " < lower"); IntPair newv = new IntPair(oldv.lower, i);if (values.compareAndSet(oldv, newv))return; } } }
性能问题:使用原子变量在中低并发(竞争)下,比使用锁速度要快,一般情况下是比锁速度快的
四、非阻塞算法
许多常见的数据结构中都可以使用非阻塞算法
非阻塞算法:在多线程中,工作是否成功有不确定性,需要循环执行,并通过CAS进行原子操作
1、上面的CasNumberRange
2、栈的非阻塞算法:只保存头部指针,只有一个状态
//栈实现的非阻塞算法:单向链表public class ConcurrentStack <E> { AtomicReference<Node<E>> top = new AtomicReference<Node<E>>();public void push(E item) { Node<E> newHead = new Node<E>(item); Node<E> oldHead;do { oldHead = top.get(); newHead.next = oldHead; } while (!top.compareAndSet(oldHead, newHead));//CAS操作:原子更新操作,循环判断,非阻塞 }public E pop() { Node<E> oldHead; Node<E> newHead;do { oldHead = top.get();if (oldHead == null) {return null; } newHead = oldHead.next; } while (!top.compareAndSet(oldHead, newHead));//CAS操作:原子更新操作,循环判断,非阻塞return oldHead.item; }private static class Node <E> {public final E item;public Node<E> next;public Node(E item) {this.item = item; } } }
3、链表的非阻塞算法:头部和尾部的快速访问,保存两个状态,更加复杂
public class LinkedQueue <E> {private static class Node <E> {final E item;final AtomicReference<LinkedQueue.Node<E>> next;public Node(E item, LinkedQueue.Node<E> next) {this.item = item;this.next = new AtomicReference<LinkedQueue.Node<E>>(next); } }private final LinkedQueue.Node<E> dummy = new LinkedQueue.Node<E>(null, null);private final AtomicReference<LinkedQueue.Node<E>> head = new AtomicReference<LinkedQueue.Node<E>>(dummy);private final AtomicReference<LinkedQueue.Node<E>> tail = new AtomicReference<LinkedQueue.Node<E>>(dummy); //保存尾节点public boolean put(E item) { LinkedQueue.Node<E> newNode = new LinkedQueue.Node<E>(item, null);while (true) { LinkedQueue.Node<E> curTail = tail.get(); LinkedQueue.Node<E> tailNext = curTail.next.get();if (curTail == tail.get()) {if (tailNext != null) {// 处于中间状态,更新尾节点为当前尾节点的next tail.compareAndSet(curTail, tailNext); } else {// 将当前尾节点的next 设置为新节点:链表if (curTail.next.compareAndSet(null, newNode)) {/** * 此处即为中间状态,虽然在这里进行了两次原子操作,整体不是原子的,但是通过算法保证了安全: * 原因是处于中间状态时,如果有其他线程进来操作,则上面那个if将执行; * 上面if的操作是来帮助当前线程完成更新尾节点操作,而当前线程的更新就会失败返回,最终则是更新成功 */// 链接成功,尾节点已经改变,则将当前尾节点,设置为新节点 tail.compareAndSet(curTail, newNode);return true; } } } } } }
3.原子域更新器
上面的逻辑,实现了链表的非阻塞算法,使用Node来保存头结点和尾节点
在实际的ConcurrentLinkedQueue中使用的是基于反射的AtomicReferenceFiledUpdater来包装Node
五、ABA问题
CAS操作中容易出现的问题:
判断值是否为A,是的话就继续更新操作换为B;
但是如果一个线程将值A改为C,然后又改回A,此时,原线程将判断A=A成功执行更新操作;
如果把A改为C,然后又改回A的操作,也需要视为变化,则需要对算法进行优化
解决:添加版本号,每次更新操作都要更新版本号,即使值是一样的
Atas ialah kandungan terperinci java并发编程(8)原子变量和非阻塞的同步机制. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Java 8 memperkenalkan API Stream, menyediakan cara yang kuat dan ekspresif untuk memproses koleksi data. Walau bagaimanapun, soalan biasa apabila menggunakan aliran adalah: bagaimana untuk memecahkan atau kembali dari operasi foreach? Gelung tradisional membolehkan gangguan awal atau pulangan, tetapi kaedah Foreach Stream tidak menyokong secara langsung kaedah ini. Artikel ini akan menerangkan sebab -sebab dan meneroka kaedah alternatif untuk melaksanakan penamatan pramatang dalam sistem pemprosesan aliran. Bacaan Lanjut: Penambahbaikan API Java Stream Memahami aliran aliran Kaedah Foreach adalah operasi terminal yang melakukan satu operasi pada setiap elemen dalam aliran. Niat reka bentuknya adalah

Python ialah bahasa pengenalan pengaturcaraan yang ideal untuk pemula melalui kemudahan pembelajaran dan ciri yang berkuasa. Asasnya termasuk: Pembolehubah: digunakan untuk menyimpan data (nombor, rentetan, senarai, dll.). Jenis data: Mentakrifkan jenis data dalam pembolehubah (integer, titik terapung, dll.). Operator: digunakan untuk operasi matematik dan perbandingan. Aliran kawalan: Kawal aliran pelaksanaan kod (penyataan bersyarat, gelung).

Pythonmemperkasakan pemula dalam menyelesaikan masalah.Sintaksnya yang mesra pengguna, perpustakaan luas, dan ciri-ciri seperti pembolehubah, pernyataan bersyarat, dan pembangunan kod yang cekap boleh dilonggarkan. Daripada mengurus data untuk mengawal aliran program dan melaksanakan tugasan berulang, Pythonprovid

C ialah pilihan ideal untuk pemula untuk mempelajari pengaturcaraan sistem Ia mengandungi komponen berikut: fail pengepala, fungsi dan fungsi utama. Program C mudah yang boleh mencetak "HelloWorld" memerlukan fail pengepala yang mengandungi pengisytiharan fungsi input/output standard dan menggunakan fungsi printf dalam fungsi utama untuk mencetak. Program C boleh disusun dan dijalankan dengan menggunakan pengkompil GCC. Selepas anda menguasai asas, anda boleh beralih kepada topik seperti jenis data, fungsi, tatasusunan dan pengendalian fail untuk menjadi pengaturcara C yang mahir.

C ialah bahasa yang sesuai untuk pemula untuk mempelajari pengaturcaraan, dan kelebihannya termasuk kecekapan, serba boleh dan mudah alih. Mempelajari bahasa C memerlukan: Memasang pengkompil C (seperti MinGW atau Cygwin) Memahami pembolehubah, jenis data, pernyataan bersyarat dan pernyataan gelung Menulis program pertama yang mengandungi fungsi utama dan fungsi printf() Berlatih melalui kes praktikal (seperti mengira purata) C pengetahuan bahasa

Java ialah bahasa pengaturcaraan popular yang boleh dipelajari oleh pembangun pemula dan berpengalaman. Tutorial ini bermula dengan konsep asas dan diteruskan melalui topik lanjutan. Selepas memasang Kit Pembangunan Java, anda boleh berlatih pengaturcaraan dengan mencipta program "Hello, World!" Selepas anda memahami kod, gunakan gesaan arahan untuk menyusun dan menjalankan program, dan "Hello, World!" Pembelajaran Java memulakan perjalanan pengaturcaraan anda, dan apabila penguasaan anda semakin mendalam, anda boleh mencipta aplikasi yang lebih kompleks.

Kapsul adalah angka geometri tiga dimensi, terdiri daripada silinder dan hemisfera di kedua-dua hujungnya. Jumlah kapsul boleh dikira dengan menambahkan isipadu silinder dan jumlah hemisfera di kedua -dua hujungnya. Tutorial ini akan membincangkan cara mengira jumlah kapsul yang diberikan dalam Java menggunakan kaedah yang berbeza. Formula volum kapsul Formula untuk jumlah kapsul adalah seperti berikut: Kelantangan kapsul = isipadu isipadu silinder Dua jumlah hemisfera dalam, R: Radius hemisfera. H: Ketinggian silinder (tidak termasuk hemisfera). Contoh 1 masukkan Jejari = 5 unit Ketinggian = 10 unit Output Jilid = 1570.8 Unit padu menjelaskan Kirakan kelantangan menggunakan formula: Kelantangan = π × r2 × h (4

Spring Boot memudahkan penciptaan aplikasi Java yang mantap, berskala, dan siap pengeluaran, merevolusi pembangunan Java. Pendekatan "Konvensyen Lebih Konfigurasi", yang wujud pada ekosistem musim bunga, meminimumkan persediaan manual, Allo
