pandas 基础
pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包
类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 。Series 和 DataFrame 分别对应于一维的序列和二维的表结构。pandas 约定俗成的导入方法如下:
from pandas import Series,DataFrame import pandas as pd
Series
Series 可以看做一个定长的有序字典。基本任意的一维数据都可以用来构造 Series 对象:
>>> s = Series([1,2,3.0,'abc']) >>> s 0 1 1 2 2 3 3 abc dtype: object
虽然 dtype:object
可以包含多种基本数据类型,但总感觉会影响性能的样子,最好还是保持单纯的 dtype。
Series 对象包含两个主要的属性:index 和 values,分别为上例中左右两列。因为传给构造器的是一个列表,所以 index 的值是从 0 起递增的整数,如果传入的是一个类字典的键值对结构,就会生成 index-value 对应的 Series;或者在初始化的时候以关键字参数显式指定一个 index 对象:
>>> s = Series(data=[1,3,5,7],index = ['a','b','x','y']) >>> s a 1 b 3 x 5 y 7 dtype: int64 >>> s.index Index(['a', 'b', 'x', 'y'], dtype='object') >>> s.values array([1, 3, 5, 7], dtype=int64)
Series 对象的元素会严格依照给出的 index 构建,这意味着:如果 data 参数是有键值对的,那么只有 index 中含有的键会被使用;以及如果 data 中缺少响应的键,即使给出 NaN 值,这个键也会被添加。
注意 Series 的 index 和 values 的元素之间虽然存在对应关系,但这与字典的映射不同。index 和 values 实际仍为互相独立的 ndarray 数组,因此 Series 对象的性能完全 ok。
Series 这种使用键值对的数据结构最大的好处在于,Series 间进行算术运算时,index 会自动对齐。
另外,Series 对象和它的 index 都含有一个 name
属性:
>>> s.name = 'a_series' >>> s.index.name = 'the_index' >>> s the_index a 1 b 3 x 5 y 7 Name: a_series, dtype: int64
DataFrame
DataFrame 是一个表格型的数据结构,它含有一组有序的列(类似于 index),每列可以是不同的值类型(不像 ndarray 只能有一个 dtype)。基本上可以把 DataFrame 看成是共享同一个 index 的 Series 的集合。
DataFrame 的构造方法与 Series 类似,只不过可以同时接受多条一维数据源,每一条都会成为单独的一列:
>>> data = {'state':['Ohino','Ohino','Ohino','Nevada','Nevada'], 'year':[2000,2001,2002,2001,2002], 'pop':[1.5,1.7,3.6,2.4,2.9]} >>> df = DataFrame(data) >>> df pop state year 0 1.5 Ohino 2000 1 1.7 Ohino 2001 2 3.6 Ohino 2002 3 2.4 Nevada 2001 4 2.9 Nevada 2002 [5 rows x 3 columns]
虽然参数 data 看起来是个字典,但字典的键并非充当 DataFrame 的 index 的角色,而是 Series 的 “name” 属性。这里生成的 index 仍是 “01234”。
较完整的 DataFrame 构造器参数为:DataFrame(data=None,index=None,coloumns=None)
,columns 即 “name”:
>>> df = DataFrame(data,index=['one','two','three','four','five'], columns=['year','state','pop','debt']) >>> df year state pop debt one 2000 Ohino 1.5 NaN two 2001 Ohino 1.7 NaN three 2002 Ohino 3.6 NaN four 2001 Nevada 2.4 NaN five 2002 Nevada 2.9 NaN [5 rows x 4 columns]
同样缺失值由 NaN 补上。看一下 index、columns 和 索引的类型:
>>> df.index Index(['one', 'two', 'three', 'four', 'five'], dtype='object') >>> df.columns Index(['year', 'state', 'pop', 'debt'], dtype='object') >>> type(df['debt']) <class 'pandas.core.series.Series'>
DataFrame 面向行和面向列的操作基本是平衡的,任意抽出一列都是 Series。
对象属性
重新索引
Series 对象的重新索引通过其 .reindex(index=None,**kwargs)
方法实现。**kwargs
中常用的参数有俩:method=None,fill_value=np.NaN
:
ser = Series([4.5,7.2,-5.3,3.6],index=['d','b','a','c']) >>> a = ['a','b','c','d','e'] >>> ser.reindex(a) a -5.3 b 7.2 c 3.6 d 4.5 e NaN dtype: float64 >>> ser.reindex(a,fill_value=0) a -5.3 b 7.2 c 3.6 d 4.5 e 0.0 dtype: float64 >>> ser.reindex(a,method='ffill') a -5.3 b 7.2 c 3.6 d 4.5 e 4.5 dtype: float64 >>> ser.reindex(a,fill_value=0,method='ffill') a -5.3 b 7.2 c 3.6 d 4.5 e 4.5 dtype: float64
.reindex()
方法会返回一个新对象,其 index 严格遵循给出的参数,method:{'backfill', 'bfill', 'pad', 'ffill', None}
参数用于指定插值(填充)方式,当没有给出时,自动用 fill_value
填充,默认为 NaN(ffill = pad,bfill = back fill,分别指插值时向前还是向后取值)
DataFrame 对象的重新索引方法为:.reindex(index=None,columns=None,**kwargs)
。仅比 Series 多了一个可选的 columns 参数,用于给列索引。用法与上例类似,只不过插值方法 method
参数只能应用于行,即轴 0。
>>> state = ['Texas','Utha','California'] >>> df.reindex(columns=state,method='ffill') Texas Utha California a 1 NaN 2 c 4 NaN 5 d 7 NaN 8 [3 rows x 3 columns] >>> df.reindex(index=['a','b','c','d'],columns=state,method='ffill') Texas Utha California a 1 NaN 2 b 1 NaN 2 c 4 NaN 5 d 7 NaN 8 [4 rows x 3 columns]
不过 fill_value
依然对有效。聪明的小伙伴可能已经想到了,可不可以通过 df.T.reindex(index,method='**').T
这样的方式来实现在列上的插值呢,答案是可行的。另外要注意,使用 reindex(index,method='**')
的时候,index 必须是单调的,否则就会引发一个 ValueError: Must be monotonic for forward fill
,比如上例中的最后一次调用,如果使用 index=['a','b','d','c']
的话就不行。
删除指定轴上的项
即删除 Series 的元素或 DataFrame 的某一行(列)的意思,通过对象的 .drop(labels, axis=0)
方法:
>>> ser d 4.5 b 7.2 a -5.3 c 3.6 dtype: float64 >>> df Ohio Texas California a 0 1 2 c 3 4 5 d 6 7 8 [3 rows x 3 columns] >>> ser.drop('c') d 4.5 b 7.2 a -5.3 dtype: float64 >>> df.drop('a') Ohio Texas California c 3 4 5 d 6 7 8 [2 rows x 3 columns] >>> df.drop(['Ohio','Texas'],axis=1) California a 2 c 5 d 8 [3 rows x 1 columns]
.drop()
返回的是一个新对象,元对象不会被改变。
索引和切片
就像 Numpy,pandas 也支持通过 obj[::]
的方式进行索引和切片,以及通过布尔型数组进行过滤。
不过须要注意,因为 pandas 对象的 index 不限于整数,所以当使用非整数作为切片索引时,它是末端包含的。
>>> foo a 4.5 b 7.2 c -5.3 d 3.6 dtype: float64 >>> bar 0 4.5 1 7.2 2 -5.3 3 3.6 dtype: float64 >>> foo[:2] a 4.5 b 7.2 dtype: float64 >>> bar[:2] 0 4.5 1 7.2 dtype: float64 >>> foo[:'c'] a 4.5 b 7.2 c -5.3 dtype: float64
这里 foo 和 bar 只有 index 不同——bar 的 index 是整数序列。可见当使用整数索引切片时,结果与 Python 列表或 Numpy 的默认状况相同;换成 'c'
这样的字符串索引时,结果就包含了这个边界元素。
另外一个特别之处在于 DataFrame 对象的索引方式,因为他有两个轴向(双重索引)。
可以这么理解:DataFrame 对象的标准切片语法为:.ix[::,::]
。ix 对象可以接受两套切片,分别为行(axis=0)和列(axis=1)的方向:
>>> df Ohio Texas California a 0 1 2 c 3 4 5 d 6 7 8 [3 rows x 3 columns] >>> df.ix[:2,:2] Ohio Texas a 0 1 c 3 4 [2 rows x 2 columns] >>> df.ix['a','Ohio'] 0
而不使用 ix ,直接切的情况就特殊了:
索引时,选取的是列
切片时,选取的是行
这看起来有点不合逻辑,但作者解释说 “这种语法设定来源于实践”,我们信他。
>>> df['Ohio'] a 0 c 3 d 6 Name: Ohio, dtype: int32 >>> df[:'c'] Ohio Texas California a 0 1 2 c 3 4 5 [2 rows x 3 columns] >>> df[:2] Ohio Texas California a 0 1 2 c 3 4 5 [2 rows x 3 columns]
使用布尔型数组的情况,注意行与列的不同切法(列切法的 :
不能省):
>>> df['Texas']>=4 a False c True d True Name: Texas, dtype: bool >>> df[df['Texas']>=4] Ohio Texas California c 3 4 5 d 6 7 8 [2 rows x 3 columns] >>> df.ix[:,df.ix['c']>=4] Texas California a 1 2 c 4 5 d 7 8 [3 rows x 2 columns]
算术运算和数据对齐
pandas 最重要的一个功能是,它可以对不同索引的对象进行算术运算。在将对象相加时,结果的索引取索引对的并集。自动的数据对齐在不重叠的索引处引入空值,默认为 NaN。
>>> foo = Series({'a':1,'b':2}) >>> foo a 1 b 2 dtype: int64 >>> bar = Series({'b':3,'d':4}) >>> bar b 3 d 4 dtype: int64 >>> foo + bar a NaN b 5 d NaN dtype: float64
DataFrame 的对齐操作会同时发生在行和列上。
当不希望在运算结果中出现 NA 值时,可以使用前面 reindex 中提到过 fill_value
参数,不过为了传递这个参数,就需要使用对象的方法,而不是操作符:df1.add(df2,fill_value=0)
。其他算术方法还有:sub(), div(), mul()
。
Series 和 DataFrame 之间的算术运算涉及广播,暂时先不讲。
函数应用和映射
Numpy 的 ufuncs(元素级数组方法)也可用于操作 pandas 对象。
当希望将函数应用到 DataFrame 对象的某一行或列时,可以使用 .apply(func, axis=0, args=(), **kwds)
方法。
f = lambda x:x.max()-x.min() >>> df Ohio Texas California a 0 1 2 c 3 4 5 d 6 7 8 [3 rows x 3 columns] >>> df.apply(f) Ohio 6 Texas 6 California 6 dtype: int64 >>> df.apply(f,axis=1) a 2 c 2 d 2 dtype: int64
排序和排名
Series 的 sort_index(ascending=True)
方法可以对 index 进行排序操作,ascending 参数用于控制升序或降序,默认为升序。
若要按值对 Series 进行排序,当使用 .order()
方法,任何缺失值默认都会被放到 Series 的末尾。
在 DataFrame 上,.sort_index(axis=0, by=None, ascending=True)
方法多了一个轴向的选择参数与一个 by 参数,by 参数的作用是针对某一(些)列进行排序(不能对行使用 by 参数):
>>> df.sort_index(by='Ohio') Ohio Texas California a 0 1 2 c 3 4 5 d 6 7 8 [3 rows x 3 columns] >>> df.sort_index(by=['California','Texas']) Ohio Texas California a 0 1 2 c 3 4 5 d 6 7 8 [3 rows x 3 columns] >>> df.sort_index(axis=1) California Ohio Texas a 2 0 1 c 5 3 4 d 8 6 7 [3 rows x 3 columns]
排名(Series.rank(method='average', ascending=True)
)的作用与排序的不同之处在于,他会把对象的 values 替换成名次(从 1 到 n)。这时唯一的问题在于如何处理平级项,方法里的 method
参数就是起这个作用的,他有四个值可选:average, min, max, first
。
>>> ser=Series([3,2,0,3],index=list('abcd')) >>> ser a 3 b 2 c 0 d 3 dtype: int64 >>> ser.rank() a 3.5 b 2.0 c 1.0 d 3.5 dtype: float64 >>> ser.rank(method='min') a 3 b 2 c 1 d 3 dtype: float64 >>> ser.rank(method='max') a 4 b 2 c 1 d 4 dtype: float64 >>> ser.rank(method='first') a 3 b 2 c 1 d 4 dtype: float64
注意在 ser[0]=ser[3] 这对平级项上,不同 method 参数表现出的不同名次。
DataFrame 的 .rank(axis=0, method='average', ascending=True)
方法多了个 axis 参数,可选择按行或列分别进行排名,暂时好像没有针对全部元素的排名方法。
统计方法
pandas 对象有一些统计方法。它们大部分都属于约简和汇总统计,用于从 Series 中提取单个值,或从 DataFrame 的行或列中提取一个 Series。
比如 DataFrame.mean(axis=0,skipna=True)
方法,当数据集中存在 NA 值时,这些值会被简单跳过,除非整个切片(行或列)全是 NA,如果不想这样,则可以通过 skipna=False
来禁用此功能:
>>> df one two a 1.40 NaN b 7.10 -4.5 c NaN NaN d 0.75 -1.3 [4 rows x 2 columns] >>> df.mean() one 3.083333 two -2.900000 dtype: float64 >>> df.mean(axis=1) a 1.400 b 1.300 c NaN d -0.275 dtype: float64 >>> df.mean(axis=1,skipna=False) a NaN b 1.300 c NaN d -0.275 dtype: float64
其他常用的统计方法有:
######################## | ****************************************** |
count | 非 NA 值的数量 |
describe | 针对 Series 或 DF 的列计算汇总统计 |
min , max | 最小值和最大值 |
argmin , argmax | 最小值和最大值的索引位置(整数) |
idxmin , idxmax | 最小值和最大值的索引值 |
quantile | 样本分位数(0 到 1) |
sum | 求和 |
mean | 均值 |
median | 中位数 |
mad | 根据均值计算平均绝对离差 |
var | 方差 |
std | 标准差 |
skew | 样本值的偏度(三阶矩) |
kurt | 样本值的峰度(四阶矩) |
cumsum | 样本值的累计和 |
cummin , cummax | 样本值的累计最大值和累计最小值 |
cumprod | 样本值的累计积 |
diff | 计算一阶差分(对时间序列很有用) |
pct_change | 计算百分数变化 |
处理缺失数据
pandas 中 NA 的主要表现为 np.nan,另外 Python 内建的 None 也会被当做 NA 处理。
处理 NA 的方法有四种:dropna , fillna , isnull , notnull
。
is(not)null
这一对方法对对象做元素级应用,然后返回一个布尔型数组,一般可用于布尔型索引。
dropna
对于一个 Series,dropna 返回一个仅含非空数据和索引值的 Series。
问题在于对 DataFrame 的处理方式,因为一旦 drop 的话,至少要丢掉一行(列)。这里的解决方式与前面类似,还是通过一个额外的参数:dropna(axis=0, how='any', thresh=None)
,how 参数可选的值为 any 或者 all。all 仅在切片元素全为 NA 时才抛弃该行(列)。另外一个有趣的参数是 thresh,该参数的类型为整数,它的作用是,比如 thresh=3,会在一行中至少有 3 个非 NA 值时将其保留。
fillna
fillna(value=None, method=None, axis=0)
中的 value 参数除了基本类型外,还可以使用字典,这样可以实现对不同的列填充不同的值。method 的用法与前面 .reindex()
方法相同,这里不再赘述。
inplace 参数
前面有个点一直没讲,结果整篇示例写下来发现还挺重要的。就是 Series 和 DataFrame 对象的方法中,凡是会对数组作出修改并返回一个新数组的,往往都有一个 replace=False
的可选参数。如果手动设定为 True,那么原数组就可以被替换。
Atas ialah kandungan terperinci pandas 基础. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas





Tutorial pemasangan Pandas: Analisis ralat pemasangan biasa dan penyelesaiannya, contoh kod khusus diperlukan Pengenalan: Pandas ialah alat analisis data yang berkuasa yang digunakan secara meluas dalam pembersihan data, pemprosesan data dan visualisasi data, jadi ia sangat dihormati dalam bidang sains data. Walau bagaimanapun, disebabkan oleh konfigurasi persekitaran dan isu pergantungan, anda mungkin menghadapi beberapa kesukaran dan ralat semasa memasang panda. Artikel ini akan memberi anda tutorial pemasangan panda dan menganalisis beberapa ralat pemasangan biasa serta penyelesaiannya. 1. Pasang panda

Cara menggunakan panda untuk membaca fail txt dengan betul memerlukan contoh kod khusus Pandas ialah perpustakaan analisis data Python yang digunakan secara meluas. Ia boleh digunakan untuk memproses pelbagai jenis data, termasuk fail CSV, fail Excel, pangkalan data SQL, dll. Pada masa yang sama, ia juga boleh digunakan untuk membaca fail teks, seperti fail txt. Walau bagaimanapun, apabila membaca fail txt, kadangkala kami menghadapi beberapa masalah, seperti masalah pengekodan, masalah pembatas, dsb. Artikel ini akan memperkenalkan cara membaca txt dengan betul menggunakan panda

Pandas ialah alat analisis data yang berkuasa yang boleh membaca dan memproses pelbagai jenis fail data dengan mudah. Antaranya, fail CSV ialah salah satu daripada format fail data yang paling biasa dan biasa digunakan. Artikel ini akan memperkenalkan cara menggunakan Panda untuk membaca fail CSV dan melakukan analisis data serta memberikan contoh kod khusus. 1. Import perpustakaan yang diperlukan Mula-mula, kita perlu mengimport perpustakaan Pandas dan perpustakaan lain yang berkaitan yang mungkin diperlukan, seperti yang ditunjukkan di bawah: importpandasaspd 2. Baca fail CSV menggunakan Pan

Python boleh memasang panda dengan menggunakan pip, menggunakan conda, daripada kod sumber, dan menggunakan alat pengurusan pakej bersepadu IDE. Pengenalan terperinci: 1. Gunakan pip dan jalankan arahan pemasangan panda pip dalam terminal atau command prompt untuk memasang panda 2. Gunakan conda dan jalankan arahan pemasangan panda di terminal atau command prompt untuk memasang panda; pemasangan dan banyak lagi.

Langkah-langkah untuk memasang panda dalam python: 1. Buka terminal atau command prompt 2. Masukkan arahan "pip install panda" untuk memasang perpustakaan panda; 3. Tunggu pemasangan selesai, dan anda boleh mengimport dan menggunakan perpustakaan panda dalam skrip Python; 4. Gunakan Ia adalah persekitaran maya tertentu Pastikan untuk mengaktifkan persekitaran maya yang sepadan sebelum memasang panda 5. Jika anda menggunakan persekitaran pembangunan bersepadu, anda boleh menambah kod "import panda sebagai pd". import perpustakaan panda.

Alat pemprosesan data: Pandas membaca data daripada pangkalan data SQL dan memerlukan contoh kod khusus Memandangkan jumlah data terus berkembang dan kerumitannya meningkat, pemprosesan data telah menjadi bahagian penting dalam masyarakat moden. Dalam proses pemprosesan data, Pandas telah menjadi salah satu alat pilihan untuk ramai penganalisis dan saintis data. Artikel ini akan memperkenalkan cara menggunakan pustaka Pandas untuk membaca data daripada pangkalan data SQL dan menyediakan beberapa contoh kod khusus. Pandas ialah alat pemprosesan dan analisis data yang berkuasa berdasarkan Python

Petua praktikal untuk membaca fail txt menggunakan panda, contoh kod khusus diperlukan Dalam analisis data dan pemprosesan data, fail txt ialah format data biasa. Menggunakan panda untuk membaca fail txt membolehkan pemprosesan data yang cepat dan mudah. Artikel ini akan memperkenalkan beberapa teknik praktikal untuk membantu anda menggunakan panda dengan lebih baik untuk membaca fail txt, bersama-sama dengan contoh kod tertentu. Baca fail txt dengan pembatas Apabila menggunakan panda untuk membaca fail txt dengan pembatas, anda boleh menggunakan read_c

Rahsia kaedah deduplikasi Pandas: cara yang cepat dan cekap untuk menyahduplikasi data, yang memerlukan contoh kod khusus Dalam proses analisis dan pemprosesan data, duplikasi dalam data sering ditemui. Data pendua mungkin mengelirukan keputusan analisis, jadi penduaan adalah langkah yang sangat penting. Pandas, pustaka pemprosesan data yang berkuasa, menyediakan pelbagai kaedah untuk mencapai penyahduplikasian data Artikel ini akan memperkenalkan beberapa kaedah penyahduplikasian yang biasa digunakan, dan melampirkan contoh kod tertentu. Kes penduaan yang paling biasa berdasarkan satu lajur adalah berdasarkan sama ada nilai lajur tertentu diduakan.
