详细讲解Python中的元类及其用法
1、用元类验证子类
每当我们定义新类的时候,元类就会运行雅正代码,以确保这个新类符合规定的规范。
Python系统把子类的class语句处理完毕,就会调用元类的 __new__
方法。元类可以通过 __new__
方法,获取子类、孙子类的名称,父亲及属性。
这样使得我们不需要将验证代码放在本类 __init__
方法中,等到构建对象再验证。
下例中,定义一个边数小于3的子类,class语句一结束,元类的验证代码就会拒绝这个class。
class ValidatePolygon(type): def __new__(meta, name, bases, class_dict): # Don't validate the abstract Polygon class if bases != (object,): if class_dict['sides'] < 3: raise ValueError('Polygons need 3+ sides') return type.__new__(meta, name, bases, class_dict) class Polygon(object, metaclass=ValidatePolygon): sides = None # Specified by subclasses @classmethod def interior_angles(cls): return (cls.sides - 2) * 180 class Triangle(Polygon): sides = 3 print(Triangle.interior_angles())
2、用元类注册子类
每次从基类中继承子类时,基类的元类都可以自动运行注册代码。
这在需要反向查找 ‘reverse lookup’ 时很有用,使得在简单标识符和对应的类之间,建立映射关系。
依然利用的是class语句执行完,自动调用元类的 __new__
方法。
import json registry = {} def register_class(target_class): registry[target_class.__name__] = target_class def deserialize(data): params = json.loads(data) name = params['class'] target_class = registry[name] return target_class(*params['args']) class Meta(type): def __new__(meta, name, bases, class_dict): cls = type.__new__(meta, name, bases, class_dict) register_class(cls) return cls class Serializable(object): def __init__(self, *args): self.args = args def serialize(self): return json.dumps({ 'class': self.__class__.__name__, 'args': self.args, }) def __repr__(self): return '%s(%s)' % ( self.__class__.__name__, ', '.join(str(x) for x in self.args)) class RegisteredSerializable(Serializable, metaclass=Meta): pass class Vector3D(RegisteredSerializable): def __init__(self, x, y, z): super().__init__(x, y, z) self.x, self.y, self.z = x, y, z v3 = Vector3D(10, -7, 3) print('Before: ', v3) data = v3.serialize() print('Serialized:', data) print('After: ', deserialize(data)) print(registry)
3、用元类注解类的属性
使用元类像是在 class 语句上放置了挂钩,class语句处理完毕,挂钩就会立刻触发。
下列中借助元类设置了 Filed.name
和 Filed.name
。
class Field(object): def __init__(self): # These will be assigned by the metaclass. self.name = None self.internal_name = None def __get__(self, instance, instance_type): if instance is None: return self return getattr(instance, self.internal_name, '') def __set__(self, instance, value): setattr(instance, self.internal_name, value) class Meta(type): def __new__(meta, name, bases, class_dict): for key, value in class_dict.items(): if isinstance(value, Field): value.name = key value.internal_name = '_' + key cls = type.__new__(meta, name, bases, class_dict) return cls class DatabaseRow(object, metaclass=Meta): pass class BetterCustomer(DatabaseRow): first_name = Field() last_name = Field() prefix = Field() suffix = Field() foo = BetterCustomer() print('Before:', repr(foo.first_name), foo.__dict__) foo.first_name = 'Euler' print('After: ', repr(foo.first_name), foo.__dict__)
元类总结就到这里,自己也没有完全理解清楚。
希望对此有深刻理解的pythoner留言。
代码来自:
Atas ialah kandungan terperinci 详细讲解Python中的元类及其用法. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



PHP dan Python mempunyai kelebihan dan kekurangan mereka sendiri, dan pilihannya bergantung kepada keperluan projek dan keutamaan peribadi. 1.PHP sesuai untuk pembangunan pesat dan penyelenggaraan aplikasi web berskala besar. 2. Python menguasai bidang sains data dan pembelajaran mesin.

Python dan JavaScript mempunyai kelebihan dan kekurangan mereka sendiri dari segi komuniti, perpustakaan dan sumber. 1) Komuniti Python mesra dan sesuai untuk pemula, tetapi sumber pembangunan depan tidak kaya dengan JavaScript. 2) Python berkuasa dalam bidang sains data dan perpustakaan pembelajaran mesin, sementara JavaScript lebih baik dalam perpustakaan pembangunan dan kerangka pembangunan depan. 3) Kedua -duanya mempunyai sumber pembelajaran yang kaya, tetapi Python sesuai untuk memulakan dengan dokumen rasmi, sementara JavaScript lebih baik dengan MDNWebDocs. Pilihan harus berdasarkan keperluan projek dan kepentingan peribadi.

Membolehkan pecutan GPU pytorch pada sistem CentOS memerlukan pemasangan cuda, cudnn dan GPU versi pytorch. Langkah-langkah berikut akan membimbing anda melalui proses: Pemasangan CUDA dan CUDNN Tentukan keserasian versi CUDA: Gunakan perintah NVIDIA-SMI untuk melihat versi CUDA yang disokong oleh kad grafik NVIDIA anda. Sebagai contoh, kad grafik MX450 anda boleh menyokong CUDA11.1 atau lebih tinggi. Muat turun dan pasang Cudatoolkit: Lawati laman web rasmi Nvidiacudatoolkit dan muat turun dan pasang versi yang sepadan mengikut versi CUDA tertinggi yang disokong oleh kad grafik anda. Pasang Perpustakaan Cudnn:

Docker menggunakan ciri -ciri kernel Linux untuk menyediakan persekitaran berjalan yang cekap dan terpencil. Prinsip kerjanya adalah seperti berikut: 1. Cermin digunakan sebagai templat baca sahaja, yang mengandungi semua yang anda perlukan untuk menjalankan aplikasi; 2. Sistem Fail Kesatuan (Unionfs) menyusun pelbagai sistem fail, hanya menyimpan perbezaan, menjimatkan ruang dan mempercepatkan; 3. Daemon menguruskan cermin dan bekas, dan pelanggan menggunakannya untuk interaksi; 4. Ruang nama dan cgroups melaksanakan pengasingan kontena dan batasan sumber; 5. Pelbagai mod rangkaian menyokong interkoneksi kontena. Hanya dengan memahami konsep -konsep teras ini, anda boleh menggunakan Docker dengan lebih baik.

Penyimpanan Objek Minio: Penyebaran berprestasi tinggi di bawah CentOS System Minio adalah prestasi tinggi, sistem penyimpanan objek yang diedarkan yang dibangunkan berdasarkan bahasa Go, serasi dengan Amazons3. Ia menyokong pelbagai bahasa pelanggan, termasuk Java, Python, JavaScript, dan GO. Artikel ini akan memperkenalkan pemasangan dan keserasian minio pada sistem CentOS. Keserasian versi CentOS Minio telah disahkan pada pelbagai versi CentOS, termasuk tetapi tidak terhad kepada: CentOS7.9: Menyediakan panduan pemasangan lengkap yang meliputi konfigurasi kluster, penyediaan persekitaran, tetapan fail konfigurasi, pembahagian cakera, dan mini

Latihan yang diedarkan Pytorch pada sistem CentOS memerlukan langkah -langkah berikut: Pemasangan Pytorch: Premisnya ialah Python dan PIP dipasang dalam sistem CentOS. Bergantung pada versi CUDA anda, dapatkan arahan pemasangan yang sesuai dari laman web rasmi Pytorch. Untuk latihan CPU sahaja, anda boleh menggunakan arahan berikut: PipinstallToRchTorchVisionTorchaudio Jika anda memerlukan sokongan GPU, pastikan versi CUDA dan CUDNN yang sama dipasang dan gunakan versi pytorch yang sepadan untuk pemasangan. Konfigurasi Alam Sekitar Teragih: Latihan yang diedarkan biasanya memerlukan pelbagai mesin atau mesin berbilang mesin tunggal. Tempat

Apabila memasang pytorch pada sistem CentOS, anda perlu dengan teliti memilih versi yang sesuai dan pertimbangkan faktor utama berikut: 1. Keserasian Persekitaran Sistem: Sistem Operasi: Adalah disyorkan untuk menggunakan CentOS7 atau lebih tinggi. CUDA dan CUDNN: Versi Pytorch dan versi CUDA berkait rapat. Sebagai contoh, Pytorch1.9.0 memerlukan CUDA11.1, manakala Pytorch2.0.1 memerlukan CUDA11.3. Versi CUDNN juga mesti sepadan dengan versi CUDA. Sebelum memilih versi PyTorch, pastikan anda mengesahkan bahawa versi CUDA dan CUDNN yang serasi telah dipasang. Versi Python: Cawangan Rasmi Pytorch

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.
