1.安装scikit-learn
1.1Scikit-learn 依赖
Python (>= 2.6 or >= 3.3),
NumPy (>= 1.6.1),
SciPy (>= 0.9).
分别查看上述三个依赖的版本,
python -V 结果:Python 2.7.3
python -c 'import scipy; print scipy.version.version' scipy版本结果:0.9.0
python -c "import numpy; print numpy.version.version" numpy结果:1.10.2
1.2 Scikit-learn安装
如果你已经安装了NumPy、SciPy和python并且均满足1.1中所需的条件,那么可以直接运行sudo pip install -U scikit-learn 执行安装。
2.计算auc指标
sklearn.metrics y_true = np.array([0, 0, 1, 1 y_scores = np.array([0.1, 0.4, 0.35, 0.8 roc_auc_score(y_true, y_scores) 输出:0.75
<br>
3.计算roc曲线
sklearn y = np.array([1, 1, 2, 2 scores = np.array([0.1, 0.4, 0.35, 0.8 fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2 thresholds 输出: array([ 0. , 0.5, 0.5, 1. ]) array([ 0.5, 0.5, 1. , 1. ]) array([ 0.8 , 0.4 , 0.35, 0.1 ])
Atas ialah kandungan terperinci python是怎么计算auc指标的?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!