Rumah > Java > javaTutorial > Java虚拟机中回收机制的探究

Java虚拟机中回收机制的探究

一个新手
Lepaskan: 2017-09-07 15:38:41
asal
1769 orang telah melayarinya


一:概述

说起垃圾回收(Garbage Collection,GC),很多人就会自然而然地把它和Java联系起来。在Java中,程序员不需要去关心内存动态分配和垃圾回收的问题,顾名思义,垃圾回收就是释放垃圾占用的空间,这一切都交给了JVM来处理。本文主要解答三个问题:

1、哪些内存需要回收?(哪些对象可以被看做是”垃圾“)
2、如何回收?(常用的垃圾回收算法)
3、使用什么工具回收?(垃圾收集器)

二、JVM垃圾判定算法

常用的垃圾判定算法包括:引用计数算法,可达性分析算法。

1、引用计数算法

java中是通过引用来和对象进行关联的,也就是说如果要操作对象,必须通过引用来进行。给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1;当引用失效时,计数器值就减1;任何时刻计数器为0的对象就是不可能再被使用的,即表示该对象可视为”垃圾“被回收。

引用计数器算法实现简单,效率高;但是不能解决循环引用问问题(A 对象引用B 对象,B 对象又引用A 对象,但是A,B 对象已不被任何其他对象引用),同时每次计数器的增加和减少都带来了很多额外的开销,所以在JDK1.1 之后,这个算法已经不再使用了。代码:

public class Main {    
    public static void main(String[] args) {
        MyTest test1 = new MyTest();
        MyTest test2 = new MyTest();

        test1.obj  = test2;
        test2.obj  = test1;//test1与test2存在相互引用 

        test1 = null;
        test2 = null;

        System.gc();//回收
    }
}

class MyTest{    
    public Object obj = null;
}
Salin selepas log masuk

虽然最后将test1和test2赋值为null,也就是说test1和test2指向的对象已经不可能再被访问,但是由于它们互相引用对方,导致它们的引用计数都不为0,那么垃圾收集器就永远不会回收它们。运行程序,从内存分析看到,事实上这两个对象的内存被回收,这也说明了当前主流的JVM都不是采用的引用计数器算法作为垃圾判定算法的。

2、可达性分析算法(根搜索算法)

根搜索算法是通过一些“GC Roots”对象作为起点,从这些节点开始往下搜索,搜索通过的路径成为引用链
(Reference Chain),当一个对象没有被GC Roots 的引用链连接的时候,说明这个对象是不可用的。

这里写图片描述

GC Roots 对象包括:
a) 虚拟机栈(栈帧中的本地变量表)中的引用的对象。
b) 方法区域中的类静态属性引用的对象。
c) 方法区域中常量引用的对象。
d) 本地方法栈中JNI(即一般说的Native方法)的引用的对象。

在可达性分析算法中,不可达的对象,也并非是“非死不可”的,这时候它们暂时处于“缓刑”阶段,要真正宣告一个对象死亡,至少要经历两次标记过程:如果对象在进行可达性分析后发现没有与GC Roots相连接的引用链,那它将会被第一次标记并且进行一次筛选,筛选的条件是此对象是否需要执行finalize()方法。当对象没有覆盖finalize()方法,或者finalize()方法已经被虚拟机调用过,虚拟机将这两种情况都视为“不需要要执行”。注意任何对象的finalize()方法只会被系统自动执行1次。

如果这个对象被判定为需要执行finalize()方法,那么这个对象将会放置在一个叫做F-Queue的队列之中,并在稍后由一个由虚拟机自动建立的、低优先级的Finalizer线程去执行它。这里所谓的“执行”是指虚拟机会触发这个方法,但并不承诺会等待它运行结束,这样做的原因是,如果一个对象在finalize()方法中执行缓慢,或者发生了死循环,将很可能会导致F-Queue队列中其他对象永久处于等待,甚至导致整个内存回收系统崩溃。因此调用finalize()方法不代表该方法中代码能够完全被执行。

finalize()方法是对象逃脱死亡命运的最后一次机会,稍后GC将对F-Queue中的对象进行第二次小规模的标记,如果对象要在finalize()中成功拯救自己——只要重新与引用链上的任何一个对象建立关联即可,譬如把自己(this关键字)赋值给某个类变量或者对象的成员变量,那在第二次标记时它将被移除出“即将回收”的集合;如果对象这时候还没有逃脱,那基本上它就真的被回收了。从如下代码中我们可以看到一个对象的finalize()被执行,但是它仍然可以存活。

/**   
 * 此代码演示了两点:   
 * 1.对象可以在被GC时自我拯救。   
 * 2.这种自救的机会只有一次,因为一个对象的finalize()方法最多只会被系统自动调用一次   
 */    public class FinalizeEscapeGC {    

  public static FinalizeEscapeGC SAVE_HOOK = null;    

  public void isAlive() {    
   System.out.println("yes, i am still alive :)");    
  }    

  @Override    
  protected void finalize() throws Throwable {    
   super.finalize();    
   System.out.println("finalize mehtod executed!");    
   FinalizeEscapeGC.SAVE_HOOK = this;    
  }    

  public static void main(String[] args) throws Throwable {    
   SAVE_HOOK = new FinalizeEscapeGC();    

   //对象第一次成功拯救自己    
   SAVE_HOOK = null;    
   System.gc();    
   //因为finalize方法优先级很低,所以暂停0.5秒以等待它    
   Thread.sleep(500);    
   if (SAVE_HOOK != null) {    
    SAVE_HOOK.isAlive();    
   } else {    
    System.out.println("no, i am dead :(");    
   }    

   //下面这段代码与上面的完全相同,但是这次自救却失败了    
   SAVE_HOOK = null;    
   System.gc();    
   //因为finalize方法优先级很低,所以暂停0.5秒以等待它    
   Thread.sleep(500);    
   if (SAVE_HOOK != null) {    
    SAVE_HOOK.isAlive();    
   } else {    
    System.out.println("no, i am dead :(");    
   }    
  }    
}
Salin selepas log masuk

运行结果:

finalize mehtod executed!    
yes, i am still alive :)    
no, i am dead :(
Salin selepas log masuk

从运行结果可以看出,SAVE_HOOK对象的finalize()方法确实被GC收集器调用过,且在被收集前成功逃脱了。
另外一个值得注意的地方是,代码中有两段完全一样的代码片段,执行结果却是一次逃脱成功,一次失败,这是因为任何一个对象的finalize()方法都只会被系统自动调用一次,如果对象面临下一次回收,它的finalize()方法不会被再次执行,因此第二段代码的自救行动失败了。

三、JVM垃圾回收算法

常用的垃圾回收算法包括:标记-清除算法,复制算法,标记-整理算法,分代收集算法

1、标记—清除算法(Mark-Sweep)(DVM 使用的算法)

标记—清除算法包括两个阶段:“标记”和“清除”。在标记阶段,确定所有要回收的对象,并做标记。清除阶段紧随标记阶段,将标记阶段确定不可用的对象清除。标记—清除算法是基础的收集算法,标记和清除阶段的效率不高,而且清除后回产生大量的不连续空间,这样当程序需要分配大内存对象时,可能无法找到足够的连续空间。

这里写图片描述

2、复制算法(Copying)

复制算法是把内存分成大小相等的两块,每次使用其中一块,当垃圾回收的时候,把存活的对象复制到另一块上,然后把这块内存整个清理掉。复制算法实现简单,运行效率高,但是由于每次只能使用其中的一半,造成内存的利用率不高。现在的JVM 用复制方法收集新生代,由于新生代中大部分对象(98%)都是朝生夕死的,所以两块内存的比例不是1:1(大概是8:1)。

这里写图片描述

3、标记—整理算法(Mark-Compact)

标记—整理算法和标记—清除算法一样,但是标记—整理算法不是把存活对象复制到另一块内存,而是把存活对象往内存的一端移动,然后直接回收边界以外的内存。标记—整理算法提高了内存的利用率,并且它适合在收集对象存活时间较长的老年代。

这里写图片描述

4、分代收集(Generational Collection)

分代收集是根据对象存活周期的不同将内存划分为几块。一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记—清理”或者“标记—整理”算法来进行回收。

四、垃圾收集器

如果说垃圾收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。上面说过,各个平台虚拟机对内存的操作各不相同,因此本章所讲的收集器是基于JDK1.7Update14之后的HotSpot虚拟机。这个虚拟机包含的所有收集器如图:

这里写图片描述

1、Serial收集器

Serial收集器是最基本、发展历史最悠久的收集器,曾经(在JDK 1.3.1之前)是虚拟机
新生代收集的唯一选择。大家看名字就会知道,这个收集器是一个单线程的收集器,但它
的“单线程”的意义并不仅仅说明它只会使用一个CPU或一条收集线程去完成垃圾收集工作,
更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束。

这里写图片描述

2、ParNew收集器

ParNew收集器其实就是Serial收集器的多线程版本,除了使用多条线程进行垃圾收集之
外,其余行为包括Serial收集器可用的所有控制参数(例如:-XX:SurvivorRatio、-XX:
PretenureSizeThreshold、-XX:HandlePromotionFailure等)、收集算法、Stop The World、对
象分配规则、回收策略等都与Serial收集器完全一样,在实现上,这两种收集器也共用了相
当多的代码。

这里写图片描述

3、Parallel Scavenge收集器

这里写图片描述

Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,Parallel Scavenge收集器的目标是达到一个可控制的吞吐量(Throughput)。所谓吞吐量就是CPU用于运行用户代码的时间与CPU总消耗时间的比值,即吞吐量=运行用户代码时间/(运行用户代码时间+垃圾收集时间)。由于与吞吐量关系密切,Parallel Scavenge收集器也经常称为“吞吐量优先”收集器。

4、Serial Old收集器

Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用“标记-整理”算法。这个收集器的主要意义也是在于给Client模式下的虚拟机使用。如果在Server模式下,那么它主要还有两大用途:一种用途是在JDK 1.5以及之前的版本中与Parallel Scavenge收集器搭配使用[1],另一种用途就是作为CMS收集器的后备预案,在并发收集发生ConcurrentMode Failure时使用。

5、Parallel Old收集器

Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。
这个收集器是在JDK 1.6中才开始提供的。

6、CMS收集器

这里写图片描述

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网站或者B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。
运作过程分为4个步骤,包括:
a)初始标记(CMS initial mark)
b)并发标记(CMS concurrent mark)
c)重新标记(CMS remark)
d)并发清除(CMS concurrent sweep)

CMS收集器存在3个缺点:
1 对CPU资源敏感。一般并发执行的程序对CPU数量都是比较敏感的
2 无法处理浮动垃圾。在并发清理阶段用户线程还在执行,这时产生的垃圾无法清理。
3 由于标记-清除算法产生大量的空间碎片。

7、G1收集器

这里写图片描述

G1是一款面向服务端应用的垃圾收集器。
G1收集器的运作大致可划分为以下几个步骤:

a)初始标记(Initial Marking)
b)并发标记(Concurrent Marking)
c)最终标记(Final Marking)
d)筛选回收(Live Data Counting and Evacuation)


Atas ialah kandungan terperinci Java虚拟机中回收机制的探究. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Label berkaitan:
sumber:php.cn
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan