python difflib模块详解

Sep 15, 2017 am 10:45 AM
python Penjelasan terperinci

这篇文章主要为大家详细介绍了python difflib模块的示例,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

difflib模块提供的类和方法用来进行序列的差异化比较,它能够比对文件并生成差异结果文本或者html格式的差异化比较页面,如果需要比较目录的不同,可以使用filecmp模块。

class difflib.SequenceMatcher

此类提供了比较任意可哈希类型序列对方法。此方法将寻找没有包含‘垃圾'元素的最大连续匹配序列。

通过对算法的复杂度比较,它由于原始的完形匹配算法,在最坏情况下有n的平方次运算,在最好情况下,具有线性的效率。

它具有自动垃圾启发式,可以将重复超过片段1%或者重复200次的字符作为垃圾来处理。可以通过将autojunk设置为false关闭该功能。

class difflib.Differ

此类比较的是文本行的差异并且产生适合人类阅读的差异结果或者增量结果,结果中各部分的表示如下:

这里写图片描述

class difflib.HtmlDiff

 此类可以被用来创建HTML表格 (或者说包含表格的html文件) ,两边对应展示或者行对行的展示比对差异结果。

 make_file(fromlines, tolines [, fromdesc][, todesc][, context][, numlines])

make_table(fromlines, tolines [, fromdesc][, todesc][, context][, numlines])

以上两个方法都可以用来生成包含一个内容为比对结果的表格的html文件,并且部分内容会高亮显示。

difflib.context_diff(a, b[, fromfile][, tofile][, fromfiledate][, tofiledate][, n][, lineterm])

比较a与b(字符串列表),并且返回一个差异文本行的生成器
示例:


>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']
>>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']
>>> for line in context_diff(s1, s2, fromfile='before.py', tofile='after.py'):
...   sys.stdout.write(line) 
*** before.py
--- after.py
***************
*** 1,4 ****
! bacon
! eggs
! ham
 guido
--- 1,4 ----
! python
! eggy
! hamster
 guido
Salin selepas log masuk

difflib.get_close_matches(word, possibilities[, n][, cutoff])

返回最大匹配结果的列表

示例:


>>> get_close_matches('appel', ['ape', 'apple', 'peach', 'puppy'])
['apple', 'ape']
>>> import keyword
>>> get_close_matches('wheel', keyword.kwlist)
['while']
>>> get_close_matches('apple', keyword.kwlist)
[]
>>> get_close_matches('accept', keyword.kwlist)
['except']
Salin selepas log masuk

difflib.ndiff(a, b[, linejunk][, charjunk])

比较a与b(字符串列表),返回一个Differ-style 的差异结果
示例:


>>> diff = ndiff('one\ntwo\nthree\n'.splitlines(1),
...       'ore\ntree\nemu\n'.splitlines(1))
>>> print ''.join(diff),
- one
? ^
+ ore
? ^
- two
- three
? -
+ tree
+ emu
Salin selepas log masuk

difflib.restore(sequence, which)

返回一个由两个比对序列产生的结果

示例


>>> diff = ndiff('one\ntwo\nthree\n'.splitlines(1),
...       'ore\ntree\nemu\n'.splitlines(1))
>>> diff = list(diff) # materialize the generated delta into a list
>>> print ''.join(restore(diff, 1)),
one
two
three
>>> print ''.join(restore(diff, 2)),
ore
tree
emu
Salin selepas log masuk

difflib.unified_diff(a, b[, fromfile][, tofile][, fromfiledate][, tofiledate][, n][, lineterm])

比较a与b(字符串列表),返回一个unified diff格式的差异结果.

示例:


>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']
>>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']
>>> for line in unified_diff(s1, s2, fromfile='before.py', tofile='after.py'):
...  sys.stdout.write(line) 
--- before.py
+++ after.py
@@ -1,4 +1,4 @@
-bacon
-eggs
-ham
+python
+eggy
+hamster
 guido
Salin selepas log masuk

实际应用示例

比对两个文件,然后生成一个展示差异结果的HTML文件


#coding:utf-8
'''
file:difflibeg.py
date:2017/9/9 10:33
author:lockey
email:lockey@123.com
desc:diffle module learning and practising 
'''
import difflib
hd = difflib.HtmlDiff()
loads = ''
with open('G:/python/note/day09/0907code/hostinfo/cpu.py','r') as load:
 loads = load.readlines()
 load.close()

mems = ''
with open('G:/python/note/day09/0907code/hostinfo/mem.py', 'r') as mem:
 mems = mem.readlines()
 mem.close()

with open('htmlout.html','a+') as fo:
 fo.write(hd.make_file(loads,mems))
 fo.close()
Salin selepas log masuk

运行结果:

这里写图片描述

生成的html文件比对结果:

这里写图片描述

Atas ialah kandungan terperinci python difflib模块详解. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Arahan sembang dan cara menggunakannya
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

PHP dan Python: Contoh dan perbandingan kod PHP dan Python: Contoh dan perbandingan kod Apr 15, 2025 am 12:07 AM

PHP dan Python mempunyai kelebihan dan kekurangan mereka sendiri, dan pilihannya bergantung kepada keperluan projek dan keutamaan peribadi. 1.PHP sesuai untuk pembangunan pesat dan penyelenggaraan aplikasi web berskala besar. 2. Python menguasai bidang sains data dan pembelajaran mesin.

Cara Melatih Model Pytorch di CentOs Cara Melatih Model Pytorch di CentOs Apr 14, 2025 pm 03:03 PM

Latihan yang cekap model pytorch pada sistem CentOS memerlukan langkah -langkah, dan artikel ini akan memberikan panduan terperinci. 1. Penyediaan Persekitaran: Pemasangan Python dan Ketergantungan: Sistem CentOS biasanya mempamerkan python, tetapi versi mungkin lebih tua. Adalah disyorkan untuk menggunakan YUM atau DNF untuk memasang Python 3 dan menaik taraf PIP: Sudoyumupdatepython3 (atau SudodnfupdatePython3), pip3install-upgradepip. CUDA dan CUDNN (Percepatan GPU): Jika anda menggunakan Nvidiagpu, anda perlu memasang Cudatool

Python vs JavaScript: Komuniti, Perpustakaan, dan Sumber Python vs JavaScript: Komuniti, Perpustakaan, dan Sumber Apr 15, 2025 am 12:16 AM

Python dan JavaScript mempunyai kelebihan dan kekurangan mereka sendiri dari segi komuniti, perpustakaan dan sumber. 1) Komuniti Python mesra dan sesuai untuk pemula, tetapi sumber pembangunan depan tidak kaya dengan JavaScript. 2) Python berkuasa dalam bidang sains data dan perpustakaan pembelajaran mesin, sementara JavaScript lebih baik dalam perpustakaan pembangunan dan kerangka pembangunan depan. 3) Kedua -duanya mempunyai sumber pembelajaran yang kaya, tetapi Python sesuai untuk memulakan dengan dokumen rasmi, sementara JavaScript lebih baik dengan MDNWebDocs. Pilihan harus berdasarkan keperluan projek dan kepentingan peribadi.

Bagaimana sokongan GPU untuk Pytorch di CentOS Bagaimana sokongan GPU untuk Pytorch di CentOS Apr 14, 2025 pm 06:48 PM

Membolehkan pecutan GPU pytorch pada sistem CentOS memerlukan pemasangan cuda, cudnn dan GPU versi pytorch. Langkah-langkah berikut akan membimbing anda melalui proses: Pemasangan CUDA dan CUDNN Tentukan keserasian versi CUDA: Gunakan perintah NVIDIA-SMI untuk melihat versi CUDA yang disokong oleh kad grafik NVIDIA anda. Sebagai contoh, kad grafik MX450 anda boleh menyokong CUDA11.1 atau lebih tinggi. Muat turun dan pasang Cudatoolkit: Lawati laman web rasmi Nvidiacudatoolkit dan muat turun dan pasang versi yang sepadan mengikut versi CUDA tertinggi yang disokong oleh kad grafik anda. Pasang Perpustakaan Cudnn:

Penjelasan terperinci mengenai Prinsip Docker Penjelasan terperinci mengenai Prinsip Docker Apr 14, 2025 pm 11:57 PM

Docker menggunakan ciri -ciri kernel Linux untuk menyediakan persekitaran berjalan yang cekap dan terpencil. Prinsip kerjanya adalah seperti berikut: 1. Cermin digunakan sebagai templat baca sahaja, yang mengandungi semua yang anda perlukan untuk menjalankan aplikasi; 2. Sistem Fail Kesatuan (Unionfs) menyusun pelbagai sistem fail, hanya menyimpan perbezaan, menjimatkan ruang dan mempercepatkan; 3. Daemon menguruskan cermin dan bekas, dan pelanggan menggunakannya untuk interaksi; 4. Ruang nama dan cgroups melaksanakan pengasingan kontena dan batasan sumber; 5. Pelbagai mod rangkaian menyokong interkoneksi kontena. Hanya dengan memahami konsep -konsep teras ini, anda boleh menggunakan Docker dengan lebih baik.

Cara Memilih Versi PyTorch Di Bawah Centos Cara Memilih Versi PyTorch Di Bawah Centos Apr 14, 2025 pm 02:51 PM

Apabila memilih versi pytorch di bawah CentOS, faktor utama berikut perlu dipertimbangkan: 1. Keserasian versi CUDA Sokongan GPU: Jika anda mempunyai NVIDIA GPU dan ingin menggunakan pecutan GPU, anda perlu memilih pytorch yang menyokong versi CUDA yang sepadan. Anda boleh melihat versi CUDA yang disokong dengan menjalankan arahan NVIDIA-SMI. Versi CPU: Jika anda tidak mempunyai GPU atau tidak mahu menggunakan GPU, anda boleh memilih versi CPU PyTorch. 2. Pytorch versi python

Cara Memasang Nginx di CentOs Cara Memasang Nginx di CentOs Apr 14, 2025 pm 08:06 PM

CentOS Memasang Nginx memerlukan mengikuti langkah-langkah berikut: memasang kebergantungan seperti alat pembangunan, pcre-devel, dan openssl-devel. Muat turun Pakej Kod Sumber Nginx, unzip dan menyusun dan memasangnya, dan tentukan laluan pemasangan sebagai/usr/local/nginx. Buat pengguna Nginx dan kumpulan pengguna dan tetapkan kebenaran. Ubah suai fail konfigurasi nginx.conf, dan konfigurasikan port pendengaran dan nama domain/alamat IP. Mulakan perkhidmatan Nginx. Kesalahan biasa perlu diberi perhatian, seperti isu ketergantungan, konflik pelabuhan, dan kesilapan fail konfigurasi. Pengoptimuman prestasi perlu diselaraskan mengikut keadaan tertentu, seperti menghidupkan cache dan menyesuaikan bilangan proses pekerja.

Cara Mengendalikan Latihan Pittorch Diagihkan di Centos Cara Mengendalikan Latihan Pittorch Diagihkan di Centos Apr 14, 2025 pm 06:36 PM

Latihan yang diedarkan Pytorch pada sistem CentOS memerlukan langkah -langkah berikut: Pemasangan Pytorch: Premisnya ialah Python dan PIP dipasang dalam sistem CentOS. Bergantung pada versi CUDA anda, dapatkan arahan pemasangan yang sesuai dari laman web rasmi Pytorch. Untuk latihan CPU sahaja, anda boleh menggunakan arahan berikut: PipinstallToRchTorchVisionTorchaudio Jika anda memerlukan sokongan GPU, pastikan versi CUDA dan CUDNN yang sama dipasang dan gunakan versi pytorch yang sepadan untuk pemasangan. Konfigurasi Alam Sekitar Teragih: Latihan yang diedarkan biasanya memerlukan pelbagai mesin atau mesin berbilang mesin tunggal. Tempat

See all articles