K-means算法在Python中的实现
K-means是机器学习中一个比较常用的算法,属于无监督学习算法,其常被用于数据的聚类,只需为它指定簇的数量即可自动将数据聚合到多类中,相同簇中的数据相似度较高,不同簇中数据相似度较低。
K-MEANS算法是输入聚类个数k,以及包含 n个数据对象的数据库,输出满足方差最小标准k个聚类的一种算法。k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。本文将和大家介绍K-means算法在Python中的实现。
核心思想
通过迭代寻找k个类簇的一种划分方案,使得用这k个类簇的均值来代表相应各类样本时所得的总体误差最小。
k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
k-means算法的基础是最小误差平方和准则,K-menas的优缺点:
优点:
原理简单
速度快
对大数据集有比较好的伸缩性
缺点:
需要指定聚类 数量K
对异常值敏感
对初始值敏感
K-means的聚类过程
其聚类过程类似于梯度下降算法,建立代价函数并通过迭代使得代价函数值越来越小
适当选择c个类的初始中心;
在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类;
利用均值等方法更新该类的中心值;
对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代。
该算法的最大优势在于简洁和快速。算法的关键在于初始中心的选择和距离公式。
K-means 实例展示
python中km的一些参数:
sklearn.cluster.KMeans( n_clusters=8, init='k-means++', n_init=10, max_iter=300, tol=0.0001, precompute_distances='auto', verbose=0, random_state=None, copy_x=True, n_jobs=1, algorithm='auto' ) n_clusters: 簇的个数,即你想聚成几类 init: 初始簇中心的获取方法 n_init: 获取初始簇中心的更迭次数,为了弥补初始质心的影响,算法默认会初始10个质心,实现算法,然后返回最好的结果。 max_iter: 最大迭代次数(因为kmeans算法的实现需要迭代) tol: 容忍度,即kmeans运行准则收敛的条件 precompute_distances:是否需要提前计算距离,这个参数会在空间和时间之间做权衡,如果是True 会把整个距离矩阵都放到内存中,auto 会默认在数据样本大于featurs*samples 的数量大于12e6 的时候False,False 时核心实现的方法是利用Cpython 来实现的 verbose: 冗长模式(不太懂是啥意思,反正一般不去改默认值) random_state: 随机生成簇中心的状态条件。 copy_x: 对是否修改数据的一个标记,如果True,即复制了就不会修改数据。bool 在scikit-learn 很多接口中都会有这个参数的,就是是否对输入数据继续copy 操作,以便不修改用户的输入数据。这个要理解Python 的内存机制才会比较清楚。 n_jobs: 并行设置 algorithm: kmeans的实现算法,有:'auto', ‘full', ‘elkan', 其中 ‘full'表示用EM方式实现 虽然有很多参数,但是都已经给出了默认值。所以我们一般不需要去传入这些参数,参数的。可以根据实际需要来调用。
下面展示一个代码例子
from sklearn.cluster import KMeans from sklearn.externals import joblib from sklearn import cluster import numpy as np # 生成10*3的矩阵 data = np.random.rand(10,3) print data # 聚类为4类 estimator=KMeans(n_clusters=4) # fit_predict表示拟合+预测,也可以分开写 res=estimator.fit_predict(data) # 预测类别标签结果 lable_pred=estimator.labels_ # 各个类别的聚类中心值 centroids=estimator.cluster_centers_ # 聚类中心均值向量的总和 inertia=estimator.inertia_ print lable_pred print centroids print inertia 代码执行结果 [0 2 1 0 2 2 0 3 2 0] [[ 0.3028348 0.25183096 0.62493622] [ 0.88481287 0.70891813 0.79463764] [ 0.66821961 0.54817207 0.30197415] [ 0.11629904 0.85684903 0.7088385 ]] 0.570794546829
为了更直观的描述,这次在图上做一个展示,由于图像上绘制二维比较直观,所以数据调整到了二维,选取100个点绘制,聚类类别为3类
from sklearn.cluster import KMeans from sklearn.externals import joblib from sklearn import cluster import numpy as np import matplotlib.pyplot as plt data = np.random.rand(100,2) estimator=KMeans(n_clusters=3) res=estimator.fit_predict(data) lable_pred=estimator.labels_ centroids=estimator.cluster_centers_ inertia=estimator.inertia_ #print res print lable_pred print centroids print inertia for i in range(len(data)): if int(lable_pred[i])==0: plt.scatter(data[i][0],data[i][1],color='red') if int(lable_pred[i])==1: plt.scatter(data[i][0],data[i][1],color='black') if int(lable_pred[i])==2: plt.scatter(data[i][0],data[i][1],color='blue') plt.show()
可以看到聚类效果还是不错的,对k-means的聚类效率进行了一个测试,将维度扩宽到50维
数据规模 | 消耗时间 | 数据维度 |
---|---|---|
10000条 | 4s | 50维 |
100000条 | 30s | 50维 |
1000000条 | 4'13s | 50维 |
对于百万级的数据,拟合时间还是能够接受的,可见效率还是不错,对模型的保存与其它的机器学习算法模型保存类似
from sklearn.externals import joblib joblib.dump(km,"model/km_model.m")
以上内容就是K-means算法在Python中的实现,希望能帮助到大家。
相关推荐:
Atas ialah kandungan terperinci K-means算法在Python中的实现. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



MySQL mempunyai versi komuniti percuma dan versi perusahaan berbayar. Versi komuniti boleh digunakan dan diubahsuai secara percuma, tetapi sokongannya terhad dan sesuai untuk aplikasi dengan keperluan kestabilan yang rendah dan keupayaan teknikal yang kuat. Edisi Enterprise menyediakan sokongan komersil yang komprehensif untuk aplikasi yang memerlukan pangkalan data yang stabil, boleh dipercayai, berprestasi tinggi dan bersedia membayar sokongan. Faktor yang dipertimbangkan apabila memilih versi termasuk kritikal aplikasi, belanjawan, dan kemahiran teknikal. Tidak ada pilihan yang sempurna, hanya pilihan yang paling sesuai, dan anda perlu memilih dengan teliti mengikut keadaan tertentu.

Artikel ini memperkenalkan operasi pangkalan data MySQL. Pertama, anda perlu memasang klien MySQL, seperti MySqlworkbench atau Command Line Client. 1. Gunakan perintah MySQL-Uroot-P untuk menyambung ke pelayan dan log masuk dengan kata laluan akaun root; 2. Gunakan CreateTatabase untuk membuat pangkalan data, dan gunakan Pilih pangkalan data; 3. Gunakan createtable untuk membuat jadual, menentukan medan dan jenis data; 4. Gunakan InsertInto untuk memasukkan data, data pertanyaan, kemas kini data dengan kemas kini, dan padam data dengan padam. Hanya dengan menguasai langkah -langkah ini, belajar menangani masalah biasa dan mengoptimumkan prestasi pangkalan data anda boleh menggunakan MySQL dengan cekap.

Tidak mustahil untuk melihat kata laluan MongoDB secara langsung melalui Navicat kerana ia disimpan sebagai nilai hash. Cara mendapatkan kata laluan yang hilang: 1. Tetapkan semula kata laluan; 2. Periksa fail konfigurasi (mungkin mengandungi nilai hash); 3. Semak Kod (boleh kata laluan Hardcode).

MySQL boleh berjalan tanpa sambungan rangkaian untuk penyimpanan dan pengurusan data asas. Walau bagaimanapun, sambungan rangkaian diperlukan untuk interaksi dengan sistem lain, akses jauh, atau menggunakan ciri -ciri canggih seperti replikasi dan clustering. Di samping itu, langkah -langkah keselamatan (seperti firewall), pengoptimuman prestasi (pilih sambungan rangkaian yang betul), dan sandaran data adalah penting untuk menyambung ke Internet.

Panduan Pengoptimuman Prestasi Pangkalan Data MySQL Dalam aplikasi yang berintensifkan sumber, pangkalan data MySQL memainkan peranan penting dan bertanggungjawab untuk menguruskan urus niaga besar-besaran. Walau bagaimanapun, apabila skala aplikasi berkembang, kemunculan prestasi pangkalan data sering menjadi kekangan. Artikel ini akan meneroka satu siri strategi pengoptimuman prestasi MySQL yang berkesan untuk memastikan aplikasi anda tetap cekap dan responsif di bawah beban tinggi. Kami akan menggabungkan kes-kes sebenar untuk menerangkan teknologi utama yang mendalam seperti pengindeksan, pengoptimuman pertanyaan, reka bentuk pangkalan data dan caching. 1. Reka bentuk seni bina pangkalan data dan seni bina pangkalan data yang dioptimumkan adalah asas pengoptimuman prestasi MySQL. Berikut adalah beberapa prinsip teras: Memilih jenis data yang betul dan memilih jenis data terkecil yang memenuhi keperluan bukan sahaja dapat menjimatkan ruang penyimpanan, tetapi juga meningkatkan kelajuan pemprosesan data.

Hadidb: Pangkalan data Python yang ringan, tinggi, Hadidb (Hadidb) adalah pangkalan data ringan yang ditulis dalam Python, dengan tahap skalabilitas yang tinggi. Pasang HadIdb menggunakan pemasangan PIP: Pengurusan Pengguna PipInstallHadidB Buat Pengguna: CreateUser () Kaedah untuk membuat pengguna baru. Kaedah pengesahan () mengesahkan identiti pengguna. dariHadidb.OperationImportuserer_Obj = user ("admin", "admin") user_obj.

MySQL Workbench boleh menyambung ke MariaDB, dengan syarat bahawa konfigurasi adalah betul. Mula -mula pilih "MariaDB" sebagai jenis penyambung. Dalam konfigurasi sambungan, tetapkan host, port, pengguna, kata laluan, dan pangkalan data dengan betul. Apabila menguji sambungan, periksa bahawa perkhidmatan MariaDB dimulakan, sama ada nama pengguna dan kata laluan betul, sama ada nombor port betul, sama ada firewall membenarkan sambungan, dan sama ada pangkalan data itu wujud. Dalam penggunaan lanjutan, gunakan teknologi penyatuan sambungan untuk mengoptimumkan prestasi. Kesilapan biasa termasuk kebenaran yang tidak mencukupi, masalah sambungan rangkaian, dan lain -lain. Apabila kesilapan debugging, dengan teliti menganalisis maklumat ralat dan gunakan alat penyahpepijatan. Mengoptimumkan konfigurasi rangkaian dapat meningkatkan prestasi

Untuk persekitaran pengeluaran, pelayan biasanya diperlukan untuk menjalankan MySQL, atas alasan termasuk prestasi, kebolehpercayaan, keselamatan, dan skalabilitas. Pelayan biasanya mempunyai perkakasan yang lebih kuat, konfigurasi berlebihan dan langkah keselamatan yang lebih ketat. Untuk aplikasi kecil, rendah, MySQL boleh dijalankan pada mesin tempatan, tetapi penggunaan sumber, risiko keselamatan dan kos penyelenggaraan perlu dipertimbangkan dengan teliti. Untuk kebolehpercayaan dan keselamatan yang lebih besar, MySQL harus digunakan di awan atau pelayan lain. Memilih konfigurasi pelayan yang sesuai memerlukan penilaian berdasarkan beban aplikasi dan jumlah data.
