Rumah > pembangunan bahagian belakang > tutorial php > MongoDB中MapReduce使用

MongoDB中MapReduce使用

小云云
Lepaskan: 2023-03-17 20:26:01
asal
1910 orang telah melayarinya

玩过Hadoop的小伙伴对MapReduce应该不陌生,MapReduce的强大且灵活,它可以将一个大问题拆分为多个小问题,将各个小问题发送到不同的机器上去处理,所有的机器都完成计算后,再将计算结果合并为一个完整的解决方案,这就是所谓的分布式计算。本文我们就来看看MongoDB中MapReduce的使用。

mapReduce

MongoDB中的MapReduce可以用来实现更复杂的聚合命令,使用MapReduce主要实现两个函数:map函数和reduce函数,map函数用来生成键值对序列,map函数的结果作为reduce函数的参数,reduce函数中再做进一步的统计,比如我的数据集如下:

{"_id" : ObjectId("59fa71d71fd59c3b2cd908d7"),"name" : "鲁迅","book" : "呐喊","price" : 38.0,"publisher" : "人民文学出版社"}
{"_id" : ObjectId("59fa71d71fd59c3b2cd908d8"),"name" : "曹雪芹","book" : "红楼梦","price" : 22.0,"publisher" : "人民文学出版社"}
{"_id" : ObjectId("59fa71d71fd59c3b2cd908d9"),"name" : "钱钟书","book" : "宋诗选注","price" : 99.0,"publisher" : "人民文学出版社"}
{"_id" : ObjectId("59fa71d71fd59c3b2cd908da"),"name" : "钱钟书","book" : "谈艺录","price" : 66.0,"publisher" : "三联书店"}
{"_id" : ObjectId("59fa71d71fd59c3b2cd908db"),"name" : "鲁迅","book" : "彷徨","price" : 55.0,"publisher" : "花城出版社"}
Salin selepas log masuk

假如我想查询每位作者所出的书的总价,操作如下:

var map=function(){emit(this.name,this.price)}
var reduce=function(key,value){return Array.sum(value)}
var options={out:"totalPrice"}
db.sang_books.mapReduce(map,reduce,options);
db.totalPrice.find()
Salin selepas log masuk

emit函数主要用来实现分组,接收两个参数,第一个参数表示分组的字段,第二个参数表示要统计的数据,reduce来做具体的数据处理操作,接收两个参数,对应emit方法的两个参数,这里使用了Array中的sum函数对price字段进行自加处理,options中定义了将结果输出的集合,届时我们将在这个集合中去查询数据,默认情况下,这个集合即使在数据库重启后也会保留,并且保留集合中的数据。查询结果如下:

{
    "_id" : "曹雪芹",
    "value" : 22.0
}
{
    "_id" : "钱钟书",
    "value" : 165.0
}
{
    "_id" : "鲁迅",
    "value" : 93.0
}
Salin selepas log masuk

再比如我想查询每位作者出了几本书,如下:

var map=function(){emit(this.name,1)}
var reduce=function(key,value){return Array.sum(value)}
var options={out:"bookNum"}
db.sang_books.mapReduce(map,reduce,options);
db.bookNum.find()
Salin selepas log masuk

查询结果如下:

{
    "_id" : "曹雪芹",
    "value" : 1.0
}
{
    "_id" : "钱钟书",
    "value" : 2.0
}
{
    "_id" : "鲁迅",
    "value" : 2.0
}
Salin selepas log masuk

将每位作者的书列出来,如下:

var map=function(){emit(this.name,this.book)}
var reduce=function(key,value){return value.join(',')}
var options={out:"books"}
db.sang_books.mapReduce(map,reduce,options);
db.books.find()
Salin selepas log masuk

结果如下:

{
    "_id" : "曹雪芹",
    "value" : "红楼梦"
}
{
    "_id" : "钱钟书",
    "value" : "宋诗选注,谈艺录"
}
{
    "_id" : "鲁迅",
    "value" : "呐喊,彷徨"
}
Salin selepas log masuk

比如查询每个人售价在¥40以上的书:

var map=function(){emit(this.name,this.book)}
var reduce=function(key,value){return value.join(',')}
var options={query:{price:{$gt:40}},out:"books"}
db.sang_books.mapReduce(map,reduce,options);
db.books.find()
Salin selepas log masuk

query表示对查到的集合再进行筛选。

结果如下:

{
    "_id" : "钱钟书",
    "value" : "宋诗选注,谈艺录"
}
{
    "_id" : "鲁迅",
    "value" : "彷徨"
}
Salin selepas log masuk

runCommand实现

我们也可以利用runCommand命令来执行MapReduce。格式如下:

db.runCommand(
               {
                 mapReduce: <collection>,
                 map: <function>,
                 reduce: <function>,
                 finalize: <function>,
                 out: <output>,
                 query: <document>,
                 sort: <document>,
                 limit: <number>,
                 scope: <document>,
                 jsMode: <boolean>,
                 verbose: <boolean>,
                 bypassDocumentValidation: <boolean>,
                 collation: <document>
               }
             )
Salin selepas log masuk

含义如下:

参数 含义
mapReduce 表示要操作的集合
map map函数
reduce reduce函数
finalize 最终处理函数
out 输出的集合
query 对结果进行过滤
sort 对结果排序
limit 返回的结果数
scope 设置参数值,在这里设置的值在map、reduce、finalize函数中可见
jsMode 是否将map执行的中间数据由javascript对象转换成BSON对象,默认为false
verbose 是否显示详细的时间统计信息
bypassDocumentValidation 是否绕过文档验证
collation 其他一些校对

如下操作,表示执行MapReduce操作并对统计的集合限制返回条数,限制返回条数之后再进行统计操作,如下:

var map=function(){emit(this.name,this.book)}
var reduce=function(key,value){return value.join(',')}
db.runCommand({mapreduce:'sang_books',map,reduce,out:"books",limit:4,verbose:true})
db.books.find()
Salin selepas log masuk

执行结果如下:

{
    "_id" : "曹雪芹",
    "value" : "红楼梦"
}
{
    "_id" : "钱钟书",
    "value" : "宋诗选注,谈艺录"
}
{
    "_id" : "鲁迅",
    "value" : "呐喊"
}
Salin selepas log masuk

小伙伴们看到,鲁迅有一本书不见了,就是因为limit是先限制集合返回条数,然后再执行统计操作。

finalize操作表示最终处理函数,如下:

var f1 = function(key,reduceValue){var obj={};obj.author=key;obj.books=reduceValue; return obj}
var map=function(){emit(this.name,this.book)}
var reduce=function(key,value){return value.join(',')}
db.runCommand({mapreduce:'sang_books',map,reduce,out:"books",finalize:f1})
db.books.find()
Salin selepas log masuk

f1第一个参数key表示emit中的第一个参数,第二个参数表示reduce的执行结果,我们可以在f1中对这个结果进行再处理,结果如下:

{
    "_id" : "曹雪芹",
    "value" : {
        "author" : "曹雪芹",
        "books" : "红楼梦"
    }
}
{
    "_id" : "钱钟书",
    "value" : {
        "author" : "钱钟书",
        "books" : "宋诗选注,谈艺录"
    }
}
{
    "_id" : "鲁迅",
    "value" : {
        "author" : "鲁迅",
        "books" : "呐喊,彷徨"
    }
}
Salin selepas log masuk

scope则可以用来定义一个在map、reduce和finalize中都可见的变量,如下:

var f1 = function(key,reduceValue){var obj={};obj.author=key;obj.books=reduceValue;obj.sang=sang; return obj}
var map=function(){emit(this.name,this.book)}
var reduce=function(key,value){return value.join(',--'+sang+'--,')}
db.runCommand({mapreduce:'sang_books',map,reduce,out:"books",finalize:f1,scope:{sang:"haha"}})
db.books.find()
Salin selepas log masuk

执行结果如下:

{
    "_id" : "曹雪芹",
    "value" : {
        "author" : "曹雪芹",
        "books" : "红楼梦",
        "sang" : "haha"
    }
}
{
    "_id" : "钱钟书",
    "value" : {
        "author" : "钱钟书",
        "books" : "宋诗选注,--haha--,谈艺录",
        "sang" : "haha"
    }
}
{
    "_id" : "鲁迅",
    "value" : {
        "author" : "鲁迅",
        "books" : "呐喊,--haha--,彷徨",
        "sang" : "haha"
    }
}
Salin selepas log masuk

看完本文希望大家有所收获。

相关推荐:

mongodb的mapreduce用法及php示例代码

如何将 MongoDB MapReduce 速度提升 20 倍

在 Oracle 数据库中实现 MapReduce

Atas ialah kandungan terperinci MongoDB中MapReduce使用. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Label berkaitan:
sumber:php.cn
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan