Rumah tajuk utama 大数据架构的几个关键技术

大数据架构的几个关键技术

Mar 10, 2018 am 09:41 AM
kunci data besar teknologi

企业IT基础设施平台的重新构建是一项复杂的任务。重新构建平台通常由一系列变化的关键业务驱动因素引发,现在情况正是如此。简而言之,主导企业IT技术的近30年的平台无法再满足推动业务发展所需的工作负载的需求。

1.jpg

数字化转型的核心是数据,它已成为商业中最有价值的事务。由于格式不兼容,传统数据库的局限性,以及无法灵活地合并来自多个来源的数据,组织长期以来一直受到其使用数据的困扰。新兴技术的出现有望改变这一切。

改善软件部署模式是消除数据使用障碍的一个主要方面。更高的“数据灵活性”还需要更灵活的数据库和更具可扩展性的实时流式传输平台。实际上,事实上,至少有七种基础技术可以结合在一起,为企业提供一种灵活的、实时的“数据结构”。

与他们正在取代的技术不同,这七种软件创新能够扩展以满足许多用户和许多用例的需求。对于企业而言,他们有能力实现更快、更明智的决策,并创造更好的客户体验。

1. NoSQL数据库

RDBMS在数据库市场上占据了近30年的主导地位。但是,面对数据量的不断增长以及数据处理速度的加快,传统关系数据库已经显示出其不足。NoSQL数据库由于其速度和扩展能力而被接管。就文档数据库而言,它们从软件工程的角度提供了一个更简单的模型。这种更简单的开发模式可加快产品上市速度,并帮助企业更快响应客户和内部用户的需求。

2.实时流媒体平台

实时响应客户对客户体验至关重要。在过去的10年中面向消费者的行业经历了巨大的颠覆,这并不神秘。这与企业对用户实时做出反应的能力有关。转向实时模型需要事件流。

消息驱动的应用程序已存在多年。然而,如今的流媒体平台的规模比以往要大得多,成本要低得多。最近流媒体技术的进步为许多优化业务的新方式打开了大门。通过为软件开发和测试团队提供实时反馈循环,事件流还可以帮助企业提高产品质量,并更快地开发新的软件。

3. Docker和容器

容器对开发人员和操作人员,以及组织本身都有很大的好处。传统的基础设施隔离方法是静态分区,即为每个工作负载分配一个单独的固定资源块(无论是物理服务器还是虚拟机)。静态分区可以更容易排除故障,但是实质性未充分利用的硬件成本很高。例如,Web服务器平均只使用了可用总计算量的10%。

容器技术的巨大好处是它能够创造一种新的隔离方式。那些最了解容器的人员可能会相信他们可以通过使用Ansible、Puppet或Chef等工具来获得同样的好处,但实际上这些技术具有很强的互补性。此外,无论企业如何努力,这些自动化工具都无法实现在不同基础设施和硬件设置之间自由移动工作负载所需的隔离。同一个容器可以在本地数据中心的裸机硬件上或公共云中的虚拟机上运行,无需进行任何更改。这是真正的工作负载移动性。

4.容器存储库

容器存储库对于敏捷性至关重要。如果没有用于构建容器映像的DevOps进程以及用于存储它们的回收站,每个容器都必须建立在每一台机器中,才可以运行。通过存储库,可以在读取该存储库的计算机上启动容器映像。在多个数据中心处理时,这变得更加复杂。如果在一个数据中心内建立一个容器图像,那么如何将图像移动到另一个数据中心?理想情况下,通过利用融合数据平台,企业将有能力在数据中心之间对存储库实现镜像。

这里的一个关键细节是,内部部署和云计算之间的镜像功能可能与企业的数据中心之间的镜像功能差异很大。融合数据平台将通过提供这些功能为企业解决这个问题,而不管组织中使用的是数据中心基础设施还是云计算基础设施。

5.容器编排

每个容器看起来都有它自己的私有操作系统,而不是静态硬件分区。与虚拟机不同,容器不需要计算和内存的静态分区。这使管理员能够在服务器上启动大量容器,而无需担心大量的内存量。有了像Kubernetes这样的容器编排工具,启动容器,移动它们并在环境中的其他地方重新启动容器变得非常容易。

在新的基础设施组件到位之后,诸如MapR-DB或MongoDB之类的文档数据库,MapR-ES或Apache Kafka之类的事件流式传输平台(诸如Kubernetes之类的编排工具),以及在Docker容器中实现用于构建和部署软件的DevOps过程之后,人们必须了解应该在这些容器中部署哪些组件的问题。

6.微服务

从历史上看,微服务的概念并不新鲜。如今的差异在于,启用技术(NoSQL数据库、事件流、容器编排)可以随着数千个微服务的创建而扩展。如果没有这些数据存储、事件流和架构编排的新方法,大规模微服务部署将不可能实现。管理大量数据、事件和容器实例所需的基础设施将无法扩展到所需的级别。

微服务都是与提供敏捷性有关。微服务通常由一个功能或一小组功能组成。工作的功能单元越小且越集中,创建、测试和部署服务就越容易。这些服务必须解耦,否则企业将失去具有敏捷性的微服务承诺。微服务可以依赖于其他服务,但通常通过负载平衡的REST API或事件流。通过使用事件流,企业可以利用请求和响应主题轻松跟踪事件的历史记录。由于整个请求流和请求中的所有数据都可以在任何时间点重播,因此这种方法对故障排除具有重大的益处。

由于微服务封装了一小部分工作,并且由于它们彼此分离,所以随着时间的推移更换或几乎没有障碍地升级服务。在原有模式下,依赖像RPC这样的紧密耦合意味着不得不关闭所有连接,然后重新建立它们。负载均衡是实现这些的一个大问题,因为人工配置使它们容易出错。

7.功能即服务

正如人们已经看到微服务在行业中占据主导地位,所以人们也会看到无服务器计算的兴起或者可能更准确地将其称为功能即服务(FaaS)。 FaaS以这样一种方式创建微服务,即代码可以包装在轻量级框架中,内置于容器中,按需执行(基于某种触发器),然后自动进行负载平衡,多亏有了轻量级框架。FaaS的美妙之处在于它让开发人员几乎完全专注于该功能。因此,FaaS看起来是微服务方法的合乎逻辑的结论。

触发事件是FaaS的关键组成部分。没有它,只有在需要完成工作的情况下,才能调用功能和消耗资源。功能的自动调用使得FaaS真正具有价值。想象一下,每当有人读取用户的配置文件时,都会有一个审计事件,这是一个必须运行以通知安全团队的功能。更具体地说,它可能仅过滤出某些类型的记录。它可以是具有选择性的,毕竟它是一个完全可定制的业务功能。需要注意的是,使用像FaaS这样的部署模型来完成这样的工作流程非常简单。

把事件放在一起

触发服务背后的魔力实际上不过是事件流中的事件。某些类型的事件比其他事件更频繁地用作触发器,但是企业如果希望成为触发器的事件都可能成为触发器。触发事件可以是文档更新,对新文档运行OCR过程,然后将OCR过程中的文本添加到NoSQL数据库。如果人们以更有趣的方式思考,每当上传图像时,都可以通过机器学习框架进行图像识别和评分。这里没有根本的限制。如果定义了一个触发器事件,发生了一些事件,该事件触发该功能,并且该功能完成其工作。

FaaS将成为采用微服务的下一个阶段。然而,接近FaaS时必须考虑一个主要因素,那就是供应商锁定。 FaaS隐藏了特定的存储机制、特定的硬件基础架构和编排,这对开发人员来说都是伟大的事情。但由于这种抽象,托管的FaaS产品是IT行业有史以来最大的供应商锁定机会之一。由于这些API不是标准化的,因此从公共云中的FaaS产品迁移几乎是不可能的,不会丢失已经完成的近100%的工作。如果通过利用来自融合数据平台的事件以更有条理的方式接近FaaS,那么在云计算提供商之间移动将变得更加容易。

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Kertas Stable Diffusion 3 akhirnya telah dikeluarkan, dan butiran seni bina didedahkan Adakah ia akan membantu untuk menghasilkan semula Sora? Kertas Stable Diffusion 3 akhirnya telah dikeluarkan, dan butiran seni bina didedahkan Adakah ia akan membantu untuk menghasilkan semula Sora? Mar 06, 2024 pm 05:34 PM

Kertas StableDiffusion3 akhirnya di sini! Model ini dikeluarkan dua minggu lalu dan menggunakan seni bina DiT (DiffusionTransformer) yang sama seperti Sora. Ia menimbulkan kekecohan apabila ia dikeluarkan. Berbanding dengan versi sebelumnya, kualiti imej yang dijana oleh StableDiffusion3 telah dipertingkatkan dengan ketara Ia kini menyokong gesaan berbilang tema, dan kesan penulisan teks juga telah dipertingkatkan, dan aksara bercelaru tidak lagi muncul. StabilityAI menegaskan bahawa StableDiffusion3 ialah satu siri model dengan saiz parameter antara 800M hingga 8B. Julat parameter ini bermakna model boleh dijalankan terus pada banyak peranti mudah alih, dengan ketara mengurangkan penggunaan AI

Kemahiran pemprosesan struktur data besar PHP Kemahiran pemprosesan struktur data besar PHP May 08, 2024 am 10:24 AM

Kemahiran pemprosesan struktur data besar: Pecahan: Pecahkan set data dan proseskannya dalam bahagian untuk mengurangkan penggunaan memori. Penjana: Hasilkan item data satu demi satu tanpa memuatkan keseluruhan set data, sesuai untuk set data tanpa had. Penstriman: Baca fail atau hasil pertanyaan baris demi baris, sesuai untuk fail besar atau data jauh. Storan luaran: Untuk set data yang sangat besar, simpan data dalam pangkalan data atau NoSQL.

DualBEV: mengatasi BEVFormer dan BEVDet4D dengan ketara, buka buku! DualBEV: mengatasi BEVFormer dan BEVDet4D dengan ketara, buka buku! Mar 21, 2024 pm 05:21 PM

Kertas kerja ini meneroka masalah mengesan objek dengan tepat dari sudut pandangan yang berbeza (seperti perspektif dan pandangan mata burung) dalam pemanduan autonomi, terutamanya cara mengubah ciri dari perspektif (PV) kepada ruang pandangan mata burung (BEV) dengan berkesan dilaksanakan melalui modul Transformasi Visual (VT). Kaedah sedia ada secara amnya dibahagikan kepada dua strategi: penukaran 2D kepada 3D dan 3D kepada 2D. Kaedah 2D-ke-3D meningkatkan ciri 2D yang padat dengan meramalkan kebarangkalian kedalaman, tetapi ketidakpastian yang wujud dalam ramalan kedalaman, terutamanya di kawasan yang jauh, mungkin menimbulkan ketidaktepatan. Manakala kaedah 3D ke 2D biasanya menggunakan pertanyaan 3D untuk mencuba ciri 2D dan mempelajari berat perhatian bagi kesesuaian antara ciri 3D dan 2D melalui Transformer, yang meningkatkan masa pengiraan dan penggunaan.

Lima trend pembangunan utama dalam industri AEC/O pada 2024 Lima trend pembangunan utama dalam industri AEC/O pada 2024 Apr 19, 2024 pm 02:50 PM

AEC/O (Seni Bina, Kejuruteraan & Pembinaan/Operasi) merujuk kepada perkhidmatan komprehensif yang menyediakan reka bentuk seni bina, reka bentuk kejuruteraan, pembinaan dan operasi dalam industri pembinaan. Pada tahun 2024, industri AEC/O menghadapi cabaran yang berubah-ubah di tengah-tengah kemajuan teknologi. Tahun ini dijangka menyaksikan integrasi teknologi termaju, menandakan anjakan paradigma dalam reka bentuk, pembinaan dan operasi. Sebagai tindak balas kepada perubahan ini, industri mentakrifkan semula proses kerja, melaraskan keutamaan, dan meningkatkan kerjasama untuk menyesuaikan diri dengan keperluan dunia yang berubah dengan pantas. Lima arah aliran utama berikut dalam industri AEC/O akan menjadi tema utama pada 2024, mengesyorkan ia bergerak ke arah masa depan yang lebih bersepadu, responsif dan mampan: rantaian bekalan bersepadu, pembuatan pintar

Aplikasi algoritma dalam pembinaan 58 platform potret Aplikasi algoritma dalam pembinaan 58 platform potret May 09, 2024 am 09:01 AM

1. Latar Belakang Pembinaan 58 Portrait Platform Pertama sekali, saya ingin berkongsi dengan anda latar belakang pembinaan 58 Portrait Platform. 1. Pemikiran tradisional platform pemprofilan tradisional tidak lagi mencukupi Membina platform pemprofilan pengguna bergantung pada keupayaan pemodelan gudang data untuk menyepadukan data daripada pelbagai barisan perniagaan untuk membina potret pengguna yang tepat untuk memahami tingkah laku, minat pengguna dan keperluan, dan menyediakan keupayaan sampingan, akhirnya, ia juga perlu mempunyai keupayaan platform data untuk menyimpan, bertanya dan berkongsi data profil pengguna dan menyediakan perkhidmatan profil dengan cekap. Perbezaan utama antara platform pemprofilan perniagaan binaan sendiri dan platform pemprofilan pejabat pertengahan ialah platform pemprofilan binaan sendiri menyediakan satu barisan perniagaan dan boleh disesuaikan atas permintaan platform pertengahan pejabat berkhidmat berbilang barisan perniagaan, mempunyai kompleks pemodelan, dan menyediakan lebih banyak keupayaan umum. 2.58 Potret pengguna latar belakang pembinaan potret di platform tengah 58

Semakan! Gabungan model mendalam (LLM/model asas/pembelajaran bersekutu/penalaan halus, dsb.) Semakan! Gabungan model mendalam (LLM/model asas/pembelajaran bersekutu/penalaan halus, dsb.) Apr 18, 2024 pm 09:43 PM

Pada 23 September, kertas kerja "DeepModelFusion:ASurvey" diterbitkan oleh Universiti Teknologi Pertahanan Nasional, JD.com dan Institut Teknologi Beijing. Gabungan/penggabungan model dalam ialah teknologi baru muncul yang menggabungkan parameter atau ramalan berbilang model pembelajaran mendalam ke dalam satu model. Ia menggabungkan keupayaan model yang berbeza untuk mengimbangi bias dan ralat model individu untuk prestasi yang lebih baik. Gabungan model mendalam pada model pembelajaran mendalam berskala besar (seperti LLM dan model asas) menghadapi beberapa cabaran, termasuk kos pengiraan yang tinggi, ruang parameter berdimensi tinggi, gangguan antara model heterogen yang berbeza, dsb. Artikel ini membahagikan kaedah gabungan model dalam sedia ada kepada empat kategori: (1) "Sambungan corak", yang menghubungkan penyelesaian dalam ruang berat melalui laluan pengurangan kerugian untuk mendapatkan gabungan model awal yang lebih baik.

Lebih daripada sekadar Gaussian 3D! Gambaran keseluruhan terkini teknik pembinaan semula 3D yang terkini Lebih daripada sekadar Gaussian 3D! Gambaran keseluruhan terkini teknik pembinaan semula 3D yang terkini Jun 02, 2024 pm 06:57 PM

Ditulis di atas & Pemahaman peribadi penulis ialah pembinaan semula 3D berasaskan imej ialah tugas mencabar yang melibatkan membuat inferens bentuk 3D objek atau pemandangan daripada set imej input. Kaedah berasaskan pembelajaran telah menarik perhatian kerana keupayaan mereka untuk menganggar secara langsung bentuk 3D. Kertas ulasan ini memfokuskan pada teknik pembinaan semula 3D yang canggih, termasuk menjana novel, pandangan ghaib. Gambaran keseluruhan perkembangan terkini dalam kaedah percikan Gaussian disediakan, termasuk jenis input, struktur model, perwakilan output dan strategi latihan. Cabaran yang tidak dapat diselesaikan dan hala tuju masa depan turut dibincangkan. Memandangkan kemajuan pesat dalam bidang ini dan banyak peluang untuk meningkatkan kaedah pembinaan semula 3D, pemeriksaan menyeluruh terhadap algoritma nampaknya penting. Oleh itu, kajian ini memberikan gambaran menyeluruh tentang kemajuan terkini dalam serakan Gaussian. (Leret ibu jari anda ke atas

Perbincangan tentang sebab dan penyelesaian kekurangan rangka kerja data besar dalam bahasa Go Perbincangan tentang sebab dan penyelesaian kekurangan rangka kerja data besar dalam bahasa Go Mar 29, 2024 pm 12:24 PM

Dalam era data besar hari ini, pemprosesan dan analisis data telah menjadi sokongan penting untuk pembangunan pelbagai industri. Sebagai bahasa pengaturcaraan dengan kecekapan pembangunan tinggi dan prestasi unggul, bahasa Go telah secara beransur-ansur menarik perhatian dalam bidang data besar. Walau bagaimanapun, berbanding dengan bahasa lain seperti Java dan Python, bahasa Go mempunyai sokongan yang agak tidak mencukupi untuk rangka kerja data besar, yang telah menyebabkan masalah bagi sesetengah pembangun. Artikel ini akan meneroka sebab utama kekurangan rangka kerja data besar dalam bahasa Go, mencadangkan penyelesaian yang sepadan dan menggambarkannya dengan contoh kod khusus. 1. Pergi bahasa