js执行机制实例详解
想要理解JavaScript的运行机制,需要分别深刻理解几个点:JavaScript的单线程机制、任务队列(同步任务和异步任务)、事件和回调函数、定时器、Event Loop(事件循环)。
JavaScript的单线程机制
JavaScript的一个语言特性(也是这门语言的核心)就是单线程。单线程简单地说就是同一时间只能做一件事,当有多个任务时,只能按照一个顺序一个完成了再执行下一个。
JavaScript的单线程与它的语言用途是有关的。作为一门浏览器脚本语言,JavaScript的主要用途是完成用户交互、操作DOM。这就决定了它只能是单线程,否则会导致复杂的同步问题。
设想JavaScript同时有两个线程,一个线程需要在某个DOM节点上添加内容,而另一个线程的操作是删除了这个节点,那么浏览器应该以谁为准呢?
所以为了避免复杂性,JavaScript从诞生起就是单线程。
为了提高CPU的利用率,HTML5提出Web Worker标准,允许JavaScript脚本创建多个线程,但是子线程完全受主线程控制,且不得操作DOM。所以这个标准并没有改变JavaScript单线程的本质。
任务队列
一个接一个地完成任务也就意味着待完成的任务是需要排队的,那么为什么会需要排队呢?
通常排队有以下两种原因:
任务计算量过大,CPU处于忙碌状态;
-
任务所需的东西未准备好所以无法继续执行,导致CPU闲置,等待输入输出设备(I/O设备)。
比如有的任务你需要Ajax获取到数据才能往下执行
由此JavaScript的设计者也意识到,这时完全可以先运行后面已经就绪的任务来提高运行效率,也就是把等待中的任务先挂起放到一边,等得到需要的东西再执行。就好比接电话时对方离开了一下,这时正好有另一个来电,于是你便把当前通话挂起,等那个通话结束后,再连回之前的通话。
所以也就出现了同步和异步的概念,任务也被分成了两种,一种是同步任务(Synchronous),另一种是异步任务(Asynchronous)。
同步任务:需要执行的任务在主线程上排队,一个接一个,前一个完成了再执行下一个
-
异步任务:没有马上被执行但需要执行的任务,存放在“任务队列”(task queue)中,“任务队列”会通知主线程什么时候哪个异步任务可以执行,然后这个任务就会进入主线程并被执行。
所有的同步执行都可以看作是没有异步任务的异步执行
具体来说,异步执行如下:
-
(1)所有同步任务都在主线程上执行,形成一个执行栈(execution context stack)。
也就是所有能被马上执行的任务都在主线程上排好了队,一个接一个的被执行。
-
(2)主线程之外,还存在一个“任务队列”(task queue)。只要异步任务有了运行结果,就在“任务队列”之中放置一个事件。
也就是说每个异步任务准备好了就会立一个唯一的flag,这个flag用来标识对应的异步任务。
-
(3)一旦“执行栈”中的所有同步任务执行完毕,系统就会读取“任务队列”,看看里面有哪些事件。那些对应的异步任务,就结束等待状态,进入执行栈开始被执行。
也就是主线程把之前的任务做完了之后,就会来看“任务队列”中的flag,来把对应的异步任务打包来执行。
-
(4)主线程不断重复以上三步。
只要主线程空了,就会去读取“任务队列”。这个过程会被不断重复,这就是JavaScript的运行机制。
那怎么知道主线程执行栈为空啊?js引擎存在monitoring process进程,会持续不断的检查主线程执行栈是否为空,一旦为空,就会去Event Queue那里检查是否有等待被调用的函数。
下面用一
张导图来说明主线程和任务队列。
导图要表达的内容用文字来表述的话:
同步和异步任务分别进入不同的执行”场所”,同步的进入主线程,异步的进入Event Table并注册函数。
当指定的事情完成时,Event Table会将这个函数移入Event Queue。
主线程内的任务执行完毕为空,会去Event Queue读取对应的函数,进入主线程执行。
上述过程会不断重复,也就是常说的Event Loop(事件循环)。
事件和回调函数
事件
“任务队列”是一个事件的队列(也可以理解成是消息的队列),IO设备完成一项任务,就会在“任务队列”中添加一个事件,表示相关的异步任务可以进入“执行栈”。接着主线程读取“任务队列”,查看里面有哪些事件。
“任务队列”中的事件,除了IO设备的事件以外,还包括一些用户产生的事件(比如鼠标点击、页面滚动等等)。只要指定过回调函数,这些事件发生时就会进入“任务队列”,等待主线程读取。
回调函数
所谓“回调函数”(callback),就是那些会被主线程挂起来的代码。异步任务必须指定回调函数,当主线程开始执行异步任务,就是执行对应的回调函数。
“任务队列”是一个先进先出的数据结构,排在前面的事件,优先被主线程读取。主线程的读取过程基本上是自动的,只要执行栈一清空,“任务队列”上第一位的事件就自动进入主线程。但是,如果包含“定时器”,主线程首先要检查一下执行时间,某些事件只有到了规定的时间,才能返回主线程。
Event Loop
主线程从“任务队列”中读取事件,这个过程是循环不断的,所以整个的运行机制又称为“Event Loop”(事件循环)。
为了更好地理解Event Loop,下面参照Philip Roberts的演讲中的一张图。
上图中,主线程在运行时,产生了heap(堆)和stack(栈),栈中的代码调用各种外部API,并在“任务队列”中加入各种事件(click,load,done)。当栈中的代码执行完毕,主线程就会读取“任务队列”,并依次执行那些事件所对应的回调函数。
执行栈中的代码(同步任务),总是在读取“任务队列”(异步任务)之前执行。
let data = []; $.ajax({ url:www.javascript.com, data:data, success:() => { console.log('发送成功!'); } })console.log('代码执行结束');
上面是一段简易的ajax
请求代码:
ajax进入Event Table,注册回调函数
success
。执行
console.log('代码执行结束')
。ajax事件完成,回调函数
success
进入Event Queue。主线程从Event Queue读取回调函数
success
并执行。
定时器
除了放置异步任务的事件,“任务队列”还可以放置定时事件,即指定某些代码在多少时间之后执行。这叫做定时器(timer)功能,也就是定时执行的代码。
SetTimeout()
和setInterval()
可以用来注册在指定时间之后单次或重复调用的函数,它们的内部运行机制完全一样,区别在于前者指定的代码是一次性执行,后者会在指定毫秒数的间隔里重复调用:
setInterval(updateClock, 60000); //60秒调用一次updateClock()
因为它们都是客户端JavaScript中重要的全局函数,所以定义为Window对象的方法。
但作为通用函数,其实不会对窗口做什么事情。
Window对象的setTImeout()
方法用来实现一个函数在指定的毫秒数之后运行。所以它接受两个参数,第一个是回调函数,第二个是推迟执行的毫秒数。 setTimeout()
和setInterval()
返回一个值,这个值可以传递给clearTimeout()
用于取消这个函数的执行。
console.log(1); setTimeout(function(){console.log(2);}, 1000);console.log(3);
上面代码的执行结果是1,3,2,因为setTimeout()
将第二行推迟到1000毫秒之后执行。
如果将setTimeout()
的第二个参数设为0,就表示当前代码执行完(执行栈清空)以后,立即执行(0毫秒间隔)指定的回调函数。
setTimeout(function(){console.log(1);}, 0);console.log(2)
上面代码的执行结果总是2,1,因为只有在执行完第二行以后,系统才会执行“任务队列”中的回调函数。
总之,setTimeout(fn,0)
的含义是,指定某个任务在主线程最早可得的空闲时间执行,也就是尽可能早地执行。它在“任务队列”的尾部添加一个事件,因此要等到同步任务和“任务队列”现有的事件都处理完,才会得到执行。
HTML5标准规定了
setTimeout()
的第二个参数的最小值(最短间隔),不得低于4毫秒,如果低于这个值,就会自动增加。
需要注意的是,setTimeout()
只是将事件插入了“任务队列”,必须等到当前代码(执行栈)执行完,主线程才会去执行它指定的回调函数。要是当前代码耗时很长,有可能要等很久,所以并没有办法保证回调函数一定会在setTimeout()
指定的时间执行。
由于历史原因,setTimeout()
和setInterval()
的第一个参数可以作为字符串传入。如果这么做,那这个字符串会在指定的超时时间或间隔之后进行求值(相当于执行eval()
)。
Node.js的Event Loop
Node.js也是单线程的Event Loop,但是它的运行机制不同于浏览器环境。
Node.js的运行机制如下。
(1)V8引擎解析JavaScript脚本。
(2)解析后的代码,调用Node API。
(3)libuv库负责Node API的执行。它将不同的任务分配给不同的线程,形成一个Event Loop(事件循环),以异步的方式将任务的执行结果返回给V8引擎。
(4)V8引擎再将结果返回给用户。
除了setTimeout和setInterval这两个方法,Node.js还提供了另外两个与”任务队列”有关的方法:process.nextTick和setImmediate。它们可以帮助我们加深对”任务队列”的理解。
process.nextTick方法可以在当前”执行栈”的尾部—-下一次Event Loop(主线程读取”任务队列”)之前—-触发回调函数。也就是说,它指定的任务总是发生在所有异步任务之前。setImmediate方法则是在当前”任务队列”的尾部添加事件,也就是说,它指定的任务总是在下一次Event Loop时执行,这与setTimeout(fn, 0)很像。请看下面的例子
process.nextTick(function A() {console.log(1);process.nextTick(function B(){console.log(2);});}); setTimeout(function timeout() {console.log('TIMEOUT FIRED'); }, 0)// 1// 2// TIMEOUT FIRED
上面代码中,由于process.nextTick方法指定的回调函数,总是在当前”执行栈”的尾部触发,所以不仅函数A比setTimeout指定的回调函数timeout先执行,而且函数B也比timeout先执行。这说明,如果有多个process.nextTick语句(不管它们是否嵌套),将全部在当前”执行栈”执行。
现在,再看setImmediate。
setImmediate(function A() {console.log(1); setImmediate(function B(){console.log(2);});}); setTimeout(function timeout() {console.log('TIMEOUT FIRED'); }, 0);
上面代码中,setImmediate与setTimeout(fn,0)各自添加了一个回调函数A和timeout,都是在下一次Event Loop触发。那么,哪个回调函数先执行呢?答案是不确定。运行结果可能是1–TIMEOUT FIRED–2,也可能是TIMEOUT FIRED–1–2。
令人困惑的是,Node.js文档中称,setImmediate指定的回调函数,总是排在setTimeout前面。实际上,这种情况只发生在递归调用的时候。
setImmediate(function (){setImmediate(function A() {console.log(1); setImmediate(function B(){console.log(2);});}); setTimeout(function timeout() {console.log('TIMEOUT FIRED'); }, 0); }); // 1 // TIMEOUT FIRED // 2
上面代码中,setImmediate和setTimeout被封装在一个setImmediate里面,它的运行结果总是1–TIMEOUT FIRED–2,这时函数A一定在timeout前面触发。至于2排在TIMEOUT FIRED的后面(即函数B在timeout后面触发),是因为setImmediate总是将事件注册到下一轮Event Loop,所以函数A和timeout是在同一轮Loop执行,而函数B在下一轮Loop执行。
我们由此得到了process.nextTick和setImmediate的一个重要区别:多个process.nextTick语句总是在当前”执行栈”一次执行完,多个setImmediate可能则需要多次loop才能执行完。事实上,这正是Node.js 10.0版添加setImmediate方法的原因,否则像下面这样的递归调用process.nextTick,将会没完没了,主线程根本不会去读取”事件队列”!
process.nextTick(function foo() {process.nextTick(foo); });
事实上,现在要是你写出递归的process.nextTick,Node.js会抛出一个警告,要求你改成setImmediate。
另外,由于process.nextTick指定的回调函数是在本次”事件循环”触发,而setImmediate指定的是在下次”事件循环”触发,所以很显然,前者总是比后者发生得早,而且执行效率也高(因为不用检查”任务队列”)。
Promise
除了广义的同步任务和异步任务,任务还有更精细的定义:
macro-task(宏任务):包括整体代码script,setTimeout,setInterval
micro-task(微任务):Promise,process.nextTick
事件循环,宏任务,微任务的关系如图所示:
按照宏任务和微任务这种分类方式,JS的执行机制是
执行一个宏任务,过程中如果遇到微任务,就将其放到微任务的【事件队列】里
当前宏任务执行完成后,会查看微任务的【事件队列】,并将里面全部的微任务依次执行完
请看下面的例子:
setTimeout(function(){ console.log('定时器开始啦') }); new Promise(function(resolve){ console.log('马上执行for循环啦'); for(var i = 0; i < 10000; i++){ i == 99 && resolve(); } }).then(function(){ console.log('执行then函数啦') }); console.log('代码执行结束');
首先执行script下的宏任务,遇到setTimeout,将其放到宏任务的【队列】里
遇到 new Promise直接执行,打印”马上执行for循环啦”
遇到then方法,是微任务,将其放到微任务的【队列里】
打印 “代码执行结束”
本轮宏任务执行完毕,查看本轮的微任务,发现有一个then方法里的函数, 打印”执行then函数啦”
到此,本轮的event loop 全部完成。
下一轮的循环里,先执行一个宏任务,发现宏任务的【队列】里有一个 setTimeout里的函数,执行打印”定时器开始啦”
所以最后的执行顺序是【马上执行for循环啦 — 代码执行结束 — 执行then函数啦 — 定时器开始啦】
我们来分析一段较复杂的代码,看看你是否真的掌握了js的执行机制:
console.log('1'); setTimeout(function() { console.log('2'); process.nextTick(function() { console.log('3'); }) new Promise(function(resolve) { console.log('4'); resolve(); }).then(function() { console.log('5') }) })process.nextTick(function() { console.log('6'); }) new Promise(function(resolve) { console.log('7'); resolve(); }).then(function() { console.log('8') }) setTimeout(function() { console.log('9'); process.nextTick(function() { console.log('10'); }) new Promise(function(resolve) { console.log('11'); resolve(); }).then(function() { console.log('12') }) })
第一轮事件循环流程分析如下:
整体script作为第一个宏任务进入主线程,遇到
console.log
,输出1。遇到
setTimeout
,其回调函数被分发到宏任务Event Queue中。我们暂且记为setTimeout1
。遇到
process.nextTick()
,其回调函数被分发到微任务Event Queue中。我们记为process1
。遇到
Promise
,new Promise
直接执行,输出7。then
被分发到微任务Event Queue中。我们记为then1
。又遇到了
setTimeout
,其回调函数被分发到宏任务Event Queue中,我们记为setTimeout2
。
宏任务Event Queue | 微任务Event Queue |
---|---|
setTimeout1 | process1 |
setTimeout2 | then1 |
* 上表是第一轮事件循环宏任务结束时各Event Queue的情况,此时已经输出了1和7。
我们发现了
process1
和then1
两个微任务。执行
process1
,输出6。执行
then1
,输出8。
好了,第一轮事件循环正式结束,这一轮的结果是输出1,7,6,8。那么第二轮时间循环从setTimeout1
宏任务开始:
首先输出2。接下来遇到了
process.nextTick()
,同样将其分发到微任务Event Queue中,记为process2
。new Promise
立即执行输出4,then
也分发到微任务Event Queue中,记为then2
。
宏任务Event Queue | 微任务Event Queue |
---|---|
setTimeout2 | process2 |
then2 |
* 第二轮事件循环宏任务结束,我们发现有process2
和then2
两个微任务可以执行。
* 输出3。
* 输出5。
* 第二轮事件循环结束,第二轮输出2,4,3,5。
* 第三轮事件循环开始,此时只剩setTimeout2了,执行。
* 直接输出9。
* 将process.nextTick()
分发到微任务Event Queue中。记为process3
。
* 直接执行new Promise
,输出11。
* 将then
分发到微任务Event Queue中,记为then3
。
宏任务Event Queue | 微任务Event Queue |
---|---|
process3 | |
then3 |
* 第三轮事件循环宏任务执行结束,执行两个微任务process3
和then3
。
* 输出10。
* 输出12。
* 第三轮事件循环结束,第三轮输出9,11,10,12。
整段代码,共进行了三次事件循环,完整的输出为1,7,6,8,2,4,3,5,9,11,10,12。
(请注意,node环境下的事件监听依赖libuv与前端环境不完全相同,输出顺序可能会有误差)
Atas ialah kandungan terperinci js执行机制实例详解. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Sistem pengendalian Windows ialah salah satu sistem pengendalian yang paling popular di dunia, dan versi baharunya Win11 telah menarik perhatian ramai. Dalam sistem Win11, mendapatkan hak pentadbir adalah operasi penting Hak pentadbir membolehkan pengguna melakukan lebih banyak operasi dan tetapan pada sistem. Artikel ini akan memperkenalkan secara terperinci cara mendapatkan kebenaran pentadbir dalam sistem Win11 dan cara mengurus kebenaran dengan berkesan. Dalam sistem Win11, hak pentadbir dibahagikan kepada dua jenis: pentadbir tempatan dan pentadbir domain. Pentadbir tempatan mempunyai hak pentadbiran penuh ke atas komputer tempatan

Penjelasan terperinci tentang operasi bahagi dalam OracleSQL Dalam OracleSQL, operasi bahagi ialah operasi matematik yang biasa dan penting, digunakan untuk mengira hasil pembahagian dua nombor. Bahagian sering digunakan dalam pertanyaan pangkalan data, jadi memahami operasi bahagian dan penggunaannya dalam OracleSQL adalah salah satu kemahiran penting untuk pembangun pangkalan data. Artikel ini akan membincangkan pengetahuan berkaitan operasi bahagian dalam OracleSQL secara terperinci dan menyediakan contoh kod khusus untuk rujukan pembaca. 1. Operasi bahagian dalam OracleSQL

Operator modulo (%) dalam PHP digunakan untuk mendapatkan baki pembahagian dua nombor. Dalam artikel ini, kami akan membincangkan peranan dan penggunaan pengendali modulo secara terperinci, dan memberikan contoh kod khusus untuk membantu pembaca memahami dengan lebih baik. 1. Peranan pengendali modulo Dalam matematik, apabila kita membahagi integer dengan integer lain, kita mendapat hasil bagi dan baki. Sebagai contoh, apabila kita membahagi 10 dengan 3, hasil bahagi ialah 3 dan selebihnya ialah 1. Operator modulo digunakan untuk mendapatkan baki ini. 2. Penggunaan operator modulo Dalam PHP, gunakan simbol % untuk mewakili modulus

Penjelasan terperinci tentang fungsi sistem panggilan sistem Linux() Panggilan sistem ialah bahagian yang sangat penting dalam sistem pengendalian Linux Ia menyediakan cara untuk berinteraksi dengan kernel sistem. Antaranya, fungsi system() adalah salah satu fungsi panggilan sistem yang biasa digunakan. Artikel ini akan memperkenalkan penggunaan fungsi system() secara terperinci dan memberikan contoh kod yang sepadan. Konsep Asas Panggilan Sistem Panggilan sistem ialah satu cara untuk atur cara pengguna berinteraksi dengan kernel sistem pengendalian. Program pengguna meminta sistem pengendalian dengan memanggil fungsi panggilan sistem

Penjelasan terperinci tentang perintah curl Linux Ringkasan: curl ialah alat baris arahan yang berkuasa yang digunakan untuk komunikasi data dengan pelayan. Artikel ini akan memperkenalkan penggunaan asas perintah curl dan memberikan contoh kod sebenar untuk membantu pembaca memahami dan menggunakan arahan dengan lebih baik. 1. Apakah curl? curl ialah alat baris arahan yang digunakan untuk menghantar dan menerima pelbagai permintaan rangkaian. Ia menyokong berbilang protokol, seperti HTTP, FTP, TELNET, dll., dan menyediakan fungsi yang kaya, seperti muat naik fail, muat turun fail, penghantaran data, proksi

Penjelasan terperinci Promise.resolve() memerlukan contoh kod khusus Promise ialah mekanisme dalam JavaScript untuk mengendalikan operasi tak segerak. Dalam pembangunan sebenar, selalunya perlu untuk memproses beberapa tugas tak segerak yang perlu dilaksanakan mengikut turutan, dan kaedah Promise.resolve() digunakan untuk mengembalikan objek Promise yang telah dipenuhi. Promise.resolve() ialah kaedah statik kelas Promise, yang menerima a

Sebagai bahasa pengaturcaraan yang digunakan secara meluas dalam bidang pembangunan perisian, bahasa C adalah pilihan pertama bagi ramai pengaturcara pemula. Mempelajari bahasa C bukan sahaja dapat membantu kita mewujudkan pengetahuan asas pengaturcaraan, tetapi juga meningkatkan kebolehan menyelesaikan masalah dan pemikiran kita. Artikel ini akan memperkenalkan secara terperinci pelan hala tuju pembelajaran bahasa C untuk membantu pemula merancang proses pembelajaran mereka dengan lebih baik. 1. Belajar tatabahasa asas Sebelum mula mempelajari bahasa C, kita perlu memahami peraturan tatabahasa asas bahasa C terlebih dahulu. Ini termasuk pembolehubah dan jenis data, operator, pernyataan kawalan (seperti pernyataan if,

Numpy ialah perpustakaan pengkomputeran saintifik Python yang menyediakan pelbagai fungsi dan alatan operasi tatasusunan. Apabila menaik taraf versi Numpy, anda perlu menanyakan versi semasa untuk memastikan keserasian Artikel ini akan memperkenalkan kaedah pertanyaan versi Numpy secara terperinci dan memberikan contoh kod tertentu. Kaedah 1: Gunakan kod Python untuk menanyakan versi Numpy Anda boleh membuat pertanyaan versi Numpy menggunakan kod Python Berikut ialah kaedah pelaksanaan dan kod contoh: importnumpyasnpprint(np
