Jadual Kandungan
1、概念
1.1、前提
2、评价指标(性能度量)
2.1、分类评价指标
2.1.1 值指标-Accuracy、Precision、Recall、F值
2.1.2 相关曲线-P-R曲线、ROC曲线及AUC值
2.2、回归评价指标
Rumah pembangunan bahagian belakang Tutorial Python 详解分类评价指标和回归评价指标以及Python代码实现

详解分类评价指标和回归评价指标以及Python代码实现

Apr 16, 2018 am 11:11 AM
indeks

这篇文章介绍的内容是详解分类评价指标和回归评价指标以及Python代码实现,有着一定的参考价值,现在分享给大家,有需要的朋友可以参考一下。

1、概念

性能度量(评价)指标,主分为两大类:
 1)分类评价指标(classification),主要分析,离散的,整数的。其具体指标包括accuracy(准确率),precision(精确率),recall(召回率),F值,P-R曲线,ROC曲线和AUC。
 2)回归评价指标(regression),主要分析整数和实数之间的关系。其具体指标包括可释方差得分(explianed_variance_score),平均绝对误差MAE(mean_absolute_error),均方误差MSE(mean-squared_error),均方根差RMSE,交叉熵lloss(Log loss,cross-entropy loss),R方值(确定系数,r2_score)。

1.1、前提

假设只有两类-正类(positive)和负类(negative),通常以关注的类为正类,其他类为负类(故多类问题亦可归纳为两类)
 混淆矩阵(Confusion matrix)如下

实际类别 预测类别

总结
TP FN P(实际为正)
FP TN N(实际为负)

表中AB模式:第一个表示预测结果的对错,第二个表示预测的类别。如TP表示,True Positive,即正确的预测为正类;FN表示,False Negative,即错误的预测为了负类。

2、评价指标(性能度量)

2.1、分类评价指标
2.1.1 值指标-Accuracy、Precision、Recall、F值
度量 Accuracy(准确率) Precision(精确率) Recall(召回率) F值
定义 正确分类的样本数与总样本数之比(预测为垃圾短信中真正的垃圾短信的比例) 判定为正例中真正正例数与判定为正例数之比(所有真的垃圾短信被分类求正确找出来的比例) 被正确判定为正例数与总正例数之比 准确率与召回率的调和平均F-score
表示 accuracy=

precision=

recall=

F - score =

1.precision也常称为查准率,recall称为查全率
 2.比较常用的是F1,

python3.6代码实现:

#调用sklearn库中的指标求解from sklearn import metricsfrom sklearn.metrics import precision_recall_curvefrom sklearn.metrics import average_precision_scorefrom sklearn.metrics import accuracy_score#给出分类结果y_pred = [0, 1, 0, 0]
y_true = [0, 1, 1, 1]
print("accuracy_score:", accuracy_score(y_true, y_pred))
print("precision_score:", metrics.precision_score(y_true, y_pred))
print("recall_score:", metrics.recall_score(y_true, y_pred))
print("f1_score:", metrics.f1_score(y_true, y_pred))
print("f0.5_score:", metrics.fbeta_score(y_true, y_pred, beta=0.5))
print("f2_score:", metrics.fbeta_score(y_true, y_pred, beta=2.0))
Salin selepas log masuk
2.1.2 相关曲线-P-R曲线、ROC曲线及AUC值

1)P-R曲线
步骤:
1、从高到低将”score”值排序并依次作为阈值threshold;
2、对于每个阈值,”score”值大于或等于这个threshold的测试样本被认为正例,其他为负例。从而形成一组预测数。
eg.
这里写图片描述
将0.9作为阈值,则第1个测试样本为正例,2、3、4、5为负例
得到


预测为正例预测为负例总计
正例(score大于阈值)0.90.11
负例(score小于阈值)0.2+0.3+0.3+0.35 = 1.150.8+0.7+0.7+0.65 = 2.854
precision=

recall=

在阈值以下的部分,当作负例,则预测为负例的取值情况是正确预测值,即如果本身是正例,则取TP;如果本身是负例,则取TN,其都为预测分值。
python实现伪代码

#precision和recall的求法如上
#主要介绍一下python画图的库
import matplotlib.pyplot ad plt
#主要用于矩阵运算的库
import numpy as np#导入iris数据及训练见前一博文
...
#加入800个噪声特征,增加图像的复杂度
#将150*800的噪声特征矩阵与150*4的鸢尾花数据集列合并
X = np.c_[X, np.random.RandomState(0).randn(n_samples, 200*n_features)]
#计算precision,recall得到数组
for i in range(n_classes):
    #计算三类鸢尾花的评价指标, _作为临时的名称使用
    precision[i], recall[i], _ = precision_recall_curve(y_test[:, i], y_score[:,i])#plot作图plt.clf()
for i in range(n_classes):
    plt.plot(recall[i], precision[i])
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.show()
Salin selepas log masuk

将上述代码补充完整后得到鸢尾花数据集的P-R曲线
这里写图片描述
2)ROC曲线
横轴:假正例率 fp rate = FP / N
纵轴:真正例率 tp rate = TP / N
步骤:
1、从高到低将”score”值排序并依次作为阈值threshold;
2、对于每个阈值,”score”值大于或等于这个threshold的测试样本被认为正例,其他为负例。从而形成一组预测数。

同P-R曲线计算类似,不再赘述
鸢尾花数据集的ROC图像为
这里写图片描述
AUC(Area Under Curve)定义为ROC曲线下的面积
AUC值提供了分类器的一个整体数值。通常AUC越大,分类器更好,取值为[0, 1]

2.2、回归评价指标

1)可释方差得分
这里写图片描述
2)平均绝对误差 MAE (Mean absolute error)
这里写图片描述
3)均方差 MSE (Mean squared error)
这里写图片描述
这里写图片描述
4)logistics回归损失
这里写图片描述
5)一致性评价 - pearson相关系数法
这里写图片描述
python代码实现

from sklearn.metrics import log_loss
log_loss(y_true, y_pred)from scipy.stats import pearsonr
pearsonr(rater1, rater2)from sklearn.metrics import cohen_kappa_score
cohen_kappa_score(rater1, rater2)
Salin selepas log masuk

Atas ialah kandungan terperinci 详解分类评价指标和回归评价指标以及Python代码实现. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

PHP dan Python: Paradigma yang berbeza dijelaskan PHP dan Python: Paradigma yang berbeza dijelaskan Apr 18, 2025 am 12:26 AM

PHP terutamanya pengaturcaraan prosedur, tetapi juga menyokong pengaturcaraan berorientasikan objek (OOP); Python menyokong pelbagai paradigma, termasuk pengaturcaraan OOP, fungsional dan prosedur. PHP sesuai untuk pembangunan web, dan Python sesuai untuk pelbagai aplikasi seperti analisis data dan pembelajaran mesin.

Memilih antara php dan python: panduan Memilih antara php dan python: panduan Apr 18, 2025 am 12:24 AM

PHP sesuai untuk pembangunan web dan prototaip pesat, dan Python sesuai untuk sains data dan pembelajaran mesin. 1.Php digunakan untuk pembangunan web dinamik, dengan sintaks mudah dan sesuai untuk pembangunan pesat. 2. Python mempunyai sintaks ringkas, sesuai untuk pelbagai bidang, dan mempunyai ekosistem perpustakaan yang kuat.

Bolehkah kod studio visual digunakan dalam python Bolehkah kod studio visual digunakan dalam python Apr 15, 2025 pm 08:18 PM

Kod VS boleh digunakan untuk menulis Python dan menyediakan banyak ciri yang menjadikannya alat yang ideal untuk membangunkan aplikasi python. Ia membolehkan pengguna untuk: memasang sambungan python untuk mendapatkan fungsi seperti penyempurnaan kod, penonjolan sintaks, dan debugging. Gunakan debugger untuk mengesan kod langkah demi langkah, cari dan selesaikan kesilapan. Mengintegrasikan Git untuk Kawalan Versi. Gunakan alat pemformatan kod untuk mengekalkan konsistensi kod. Gunakan alat linting untuk melihat masalah yang berpotensi lebih awal.

Boleh kod vs dijalankan di Windows 8 Boleh kod vs dijalankan di Windows 8 Apr 15, 2025 pm 07:24 PM

Kod VS boleh dijalankan pada Windows 8, tetapi pengalaman mungkin tidak hebat. Mula -mula pastikan sistem telah dikemas kini ke patch terkini, kemudian muat turun pakej pemasangan kod VS yang sepadan dengan seni bina sistem dan pasangnya seperti yang diminta. Selepas pemasangan, sedar bahawa beberapa sambungan mungkin tidak sesuai dengan Windows 8 dan perlu mencari sambungan alternatif atau menggunakan sistem Windows yang lebih baru dalam mesin maya. Pasang sambungan yang diperlukan untuk memeriksa sama ada ia berfungsi dengan betul. Walaupun kod VS boleh dilaksanakan pada Windows 8, disyorkan untuk menaik taraf ke sistem Windows yang lebih baru untuk pengalaman dan keselamatan pembangunan yang lebih baik.

Adakah sambungan vscode berniat jahat? Adakah sambungan vscode berniat jahat? Apr 15, 2025 pm 07:57 PM

Sambungan kod VS menimbulkan risiko yang berniat jahat, seperti menyembunyikan kod jahat, mengeksploitasi kelemahan, dan melancap sebagai sambungan yang sah. Kaedah untuk mengenal pasti sambungan yang berniat jahat termasuk: memeriksa penerbit, membaca komen, memeriksa kod, dan memasang dengan berhati -hati. Langkah -langkah keselamatan juga termasuk: kesedaran keselamatan, tabiat yang baik, kemas kini tetap dan perisian antivirus.

Python vs JavaScript: Keluk Pembelajaran dan Kemudahan Penggunaan Python vs JavaScript: Keluk Pembelajaran dan Kemudahan Penggunaan Apr 16, 2025 am 12:12 AM

Python lebih sesuai untuk pemula, dengan lengkung pembelajaran yang lancar dan sintaks ringkas; JavaScript sesuai untuk pembangunan front-end, dengan lengkung pembelajaran yang curam dan sintaks yang fleksibel. 1. Sintaks Python adalah intuitif dan sesuai untuk sains data dan pembangunan back-end. 2. JavaScript adalah fleksibel dan digunakan secara meluas dalam pengaturcaraan depan dan pelayan.

PHP dan Python: menyelam mendalam ke dalam sejarah mereka PHP dan Python: menyelam mendalam ke dalam sejarah mereka Apr 18, 2025 am 12:25 AM

PHP berasal pada tahun 1994 dan dibangunkan oleh Rasmuslerdorf. Ia pada asalnya digunakan untuk mengesan pelawat laman web dan secara beransur-ansur berkembang menjadi bahasa skrip sisi pelayan dan digunakan secara meluas dalam pembangunan web. Python telah dibangunkan oleh Guidovan Rossum pada akhir 1980 -an dan pertama kali dikeluarkan pada tahun 1991. Ia menekankan kebolehbacaan dan kesederhanaan kod, dan sesuai untuk pengkomputeran saintifik, analisis data dan bidang lain.

Cara menjalankan program di terminal vscode Cara menjalankan program di terminal vscode Apr 15, 2025 pm 06:42 PM

Dalam kod VS, anda boleh menjalankan program di terminal melalui langkah -langkah berikut: Sediakan kod dan buka terminal bersepadu untuk memastikan bahawa direktori kod selaras dengan direktori kerja terminal. Pilih arahan Run mengikut bahasa pengaturcaraan (seperti python python your_file_name.py) untuk memeriksa sama ada ia berjalan dengan jayanya dan menyelesaikan kesilapan. Gunakan debugger untuk meningkatkan kecekapan debug.

See all articles