Rumah > pembangunan bahagian belakang > Tutorial Python > 浅谈tensorflow1.0 池化层(pooling)和全连接层(dense)

浅谈tensorflow1.0 池化层(pooling)和全连接层(dense)

不言
Lepaskan: 2018-04-27 10:59:17
asal
4301 orang telah melayarinya

本篇文章主要介绍了浅谈tensorflow1.0 池化层(pooling)和全连接层(dense),现在分享给大家,也给大家做个参考。一起过来看看吧

池化层定义在tensorflow/python/layers/pooling.py.

有最大值池化和均值池化。

1、tf.layers.max_pooling2d

max_pooling2d(
  inputs,
  pool_size,
  strides,
  padding='valid',
  data_format='channels_last',
  name=None
)
Salin selepas log masuk

  1. inputs: 进行池化的数据。

  2. pool_size: 池化的核大小(pool_height, pool_width),如[3,3]. 如果长宽相等,也可以直接设置为一个数,如pool_size=3.

  3. strides: 池化的滑动步长。可以设置为[1,1]这样的两个整数. 也可以直接设置为一个数,如strides=2

  4. padding: 边缘填充,'same' 和'valid‘选其一。默认为valid

  5. data_format: 输入数据格式,默认为channels_last ,即 (batch, height, width, channels),也可以设置为channels_first 对应 (batch, channels, height, width).

  6. name: 层的名字。

例:

pool1=tf.layers.max_pooling2d(inputs=x, pool_size=[2, 2], strides=2)
Salin selepas log masuk

一般是放在卷积层之后,如:

conv=tf.layers.conv2d(
   inputs=x,
   filters=32,
   kernel_size=[5, 5],
   padding="same",
   activation=tf.nn.relu)
pool=tf.layers.max_pooling2d(inputs=conv, pool_size=[2, 2], strides=2)
Salin selepas log masuk

2.tf.layers.average_pooling2d

average_pooling2d(
  inputs,
  pool_size,
  strides,
  padding='valid',
  data_format='channels_last',
  name=None
)
Salin selepas log masuk

参数和前面的最大值池化一样。

全连接dense层定义在 tensorflow/python/layers/core.py.

3、tf.layers.dense

dense(
  inputs,
  units,
  activation=None,
  use_bias=True,
  kernel_initializer=None,
  bias_initializer=tf.zeros_initializer(),
  kernel_regularizer=None,
  bias_regularizer=None,
  activity_regularizer=None,
  trainable=True,
  name=None,
  reuse=None
)
Salin selepas log masuk

  1. inputs: 输入数据,2维tensor.

  2. units: 该层的神经单元结点数。

  3. activation: 激活函数.

  4. use_bias: Boolean型,是否使用偏置项.

  5. kernel_initializer: 卷积核的初始化器.

  6. bias_initializer: 偏置项的初始化器,默认初始化为0.

  7. kernel_regularizer: 卷积核化的正则化,可选.

  8. bias_regularizer: 偏置项的正则化,可选.

  9. activity_regularizer: 输出的正则化函数.

  10. trainable: Boolean型,表明该层的参数是否参与训练。如果为真则变量加入到图集合中 GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).

  11. name: 层的名字.

  12. reuse: Boolean型, 是否重复使用参数.

全连接层执行操作 outputs = activation(inputs.kernel + bias)

如果执行结果不想进行激活操作,则设置activation=None。

例:

#全连接层
dense1 = tf.layers.dense(inputs=pool3, units=1024, activation=tf.nn.relu)
dense2= tf.layers.dense(inputs=dense1, units=512, activation=tf.nn.relu)
logits= tf.layers.dense(inputs=dense2, units=10, activation=None)
Salin selepas log masuk

也可以对全连接层的参数进行正则化约束:


复制代码 代码如下:

dense1 = tf.layers.dense(inputs=pool3, units=1024, activation=tf.nn.relu,kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003))
Salin selepas log masuk

相关推荐:

浅谈Tensorflow模型的保存与恢复加载

详解tensorflow载入数据的三种方式

Atas ialah kandungan terperinci 浅谈tensorflow1.0 池化层(pooling)和全连接层(dense). Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Label berkaitan:
sumber:php.cn
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Artikel terbaru oleh pengarang
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan