python pandas中DataFrame类型数据操作函数的方法
这篇文章主要介绍了关于python pandas中DataFrame类型数据操作函数的方法,有着一定的参考价值,现在分享给大家,有需要的朋友可以参考一下
python数据分析工具pandas中DataFrame和Series作为主要的数据结构.
本文主要是介绍如何对DataFrame数据进行操作并结合一个实例测试操作函数。
1)查看DataFrame数据及属性
df_obj = DataFrame() #创建DataFrame对象 df_obj.dtypes #查看各行的数据格式 df_obj['列名'].astype(int)#转换某列的数据类型 df_obj.head() #查看前几行的数据,默认前5行 df_obj.tail() #查看后几行的数据,默认后5行 df_obj.index #查看索引 df_obj.columns #查看列名 df_obj.values #查看数据值 df_obj.describe() #描述性统计 df_obj.T #转置 df_obj.sort_values(by=['',''])#同上
2)使用DataFrame选择数据:
df_obj.ix[1:3] #获取1-3行的数据,该操作叫切片操作,获取行数据 df_obj.ix[columns_index] #获取列的数据 df_obj.ix[1:3,[1,3]]#获取1列3列的1~3行数据 df_obj[columns].drop_duplicates() #剔除重复行数据
3)使用DataFrame重置数据:
df_obj.ix[1:3,[1,3]]=1#所选位置数据替换为1
4)使用DataFrame筛选数据(类似SQL中的WHERE):
alist = ['023-18996609823'] df_obj['用户号码'].isin(alist) #将要过滤的数据放入字典中,使用isin对数据进行筛选,返回行索引以及每行筛选的结果,若匹配则返回ture df_obj[df_obj['用户号码'].isin(alist)] #获取匹配结果为ture的行
5)使用DataFrame模糊筛选数据(类似SQL中的LIKE):
df_obj[df_obj['套餐'].str.contains(r'.*?语音CDMA.*')] #使用正则表达式进行模糊匹配,*匹配0或无限次,?匹配0或1次
6)使用DataFrame进行数据转换(后期补充说明)
df_obj['支局_维护线'] = df_obj['支局_维护线'].str.replace('巫溪分公司(.{2,})支局','\\1')#可以使用正则表达式 可以设置take_last=ture 保留最后一个,或保留开始一个.补充说明:注意take_last=ture已过时,请使用keep='last'
7)使用pandas中读取数据:
read_csv('D:\LQJ.csv',sep=';',nrows=2) #首先输入csv文本地址,然后分割符选择等等 df.to_excel('foo.xlsx',sheet_name='Sheet1');pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])#写入读取excel数据,pd.read_excel读取的数据是以DataFrame形式存储 df.to_hdf('foo.h5','df');pd.read_hdf('foo.h5','df')#写入读取HDF5数据
8)使用pandas聚合数据(类似SQL中的GROUP BY 或HAVING):
data_obj['用户标识'].groupby(data_obj['支局_维护线']) data_obj.groupby('支局_维护线')['用户标识'] #上面的简单写法 adsl_obj.groupby('支局_维护线')['用户标识'].agg([('ADSL','count')])#按支局进行汇总对用户标识进行计数,并将计数列的列名命名为ADSL
9)使用pandas合并数据集(类似SQL中的JOIN):
merge(mxj_obj2, mxj_obj1 ,on='用户标识',how='inner')# mxj_obj1和mxj_obj2将用户标识当成重叠列的键合并两个数据集,inner表示取两个数据集的交集.
10)清理数据
df[df.isnull()] df[df.notnull()] df.dropna()#将所有含有nan项的row删除 df.dropna(axis=1,thresh=3) #将在列的方向上三个为NaN的项删除 df.dropna(how='ALL')#将全部项都是nan的row删除填充值 df.fillna(0) df.fillna({1:0,2:0.5}) #对第一列nan值赋0,第二列赋值0.5 df.fillna(method='ffill') #在列方向上以前一个值作为值赋给NaN
实例
1. 读取excel数据
代码如下
import pandas as pd# 读取高炉数据,注意文件名不能为中文 data=pd.read_excel('gaolushuju_201501-03.xlsx', '201501', index_col=None, na_values=['NA']) print data
测试结果如下
燃料比 顶温西南 顶温西北 顶温东南 顶温东北 0 531.46 185 176 176 174 1 510.35 184 173 184 188 2 533.49 180 165 182 177 3 511.51 190 172 179 188 4 531.02 180 167 173 180 5 511.24 174 164 178 176 6 532.62 173 170 168 179 7 583.00 182 175 176 173 8 530.70 158 149 159 156 9 530.32 168 156 169 171 10 528.62 164 150 171 169
2. 切片处理,选取行或列,修改数据
代码如下:
data_1row=data.ix[1] data_5row_2col=data.ix[0:5,[u'燃料比',u'顶温西南'] print data_1row,data_5row_2col data_5row_2col.ix[0:1,0:2]=3
测试结果如下:
燃料比 510.35 顶温西南 184.00 顶温西北 173.00 顶温东南 184.00 顶温东北 188.00 Name: 1, dtype: float64 燃料比 顶温西南 0 531.46 185 1 510.35 184 2 533.49 180 3 511.51 190 4 531.02 180 5 511.24 174 燃料比 顶温西南 0 3.00 3 1 3.00 3 2 533.49 180 3 511.51 190 4 531.02 180 5 511.24 174
格式说明,data_5row_2col.ix[0:1,0:2],data_5row_2col.ix[0:1,[0,2]],选取部分行和列需加”[]”
3. 排序
代码如下:
print data_1row.sort_values() print data_5row_2col.sort_values(by=u'燃料比')
测试结果如下:
顶温西北 173.00 顶温西南 184.00 顶温东南 184.00 顶温东北 188.00 燃料比 510.35 Name: 1, dtype: float64 燃料比 顶温西南 1 510.35 184 5 511.24 174 3 511.51 190 4 531.02 180 0 531.46 185 2 533.49 180
4. 删除重复的行
代码如下:
print data_5row_2col[u'顶温西南'].drop_duplicates()#剔除重复行数据
测试结果如下:
0 185 1 184 2 180 3 190 5 174 Name: 顶温西南, dtype: int64
说明:从测试结果3中可以看出顶温西南index=2的数据与index=4的数据重复,测试结果4显示将index=4的顶温西南数据删除
相关推荐:
对Python 2.7 pandas 中的read_excel详解
Atas ialah kandungan terperinci python pandas中DataFrame类型数据操作函数的方法. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

PHP terutamanya pengaturcaraan prosedur, tetapi juga menyokong pengaturcaraan berorientasikan objek (OOP); Python menyokong pelbagai paradigma, termasuk pengaturcaraan OOP, fungsional dan prosedur. PHP sesuai untuk pembangunan web, dan Python sesuai untuk pelbagai aplikasi seperti analisis data dan pembelajaran mesin.

PHP sesuai untuk pembangunan web dan prototaip pesat, dan Python sesuai untuk sains data dan pembelajaran mesin. 1.Php digunakan untuk pembangunan web dinamik, dengan sintaks mudah dan sesuai untuk pembangunan pesat. 2. Python mempunyai sintaks ringkas, sesuai untuk pelbagai bidang, dan mempunyai ekosistem perpustakaan yang kuat.

Python lebih sesuai untuk pemula, dengan lengkung pembelajaran yang lancar dan sintaks ringkas; JavaScript sesuai untuk pembangunan front-end, dengan lengkung pembelajaran yang curam dan sintaks yang fleksibel. 1. Sintaks Python adalah intuitif dan sesuai untuk sains data dan pembangunan back-end. 2. JavaScript adalah fleksibel dan digunakan secara meluas dalam pengaturcaraan depan dan pelayan.

Sambungan kod VS menimbulkan risiko yang berniat jahat, seperti menyembunyikan kod jahat, mengeksploitasi kelemahan, dan melancap sebagai sambungan yang sah. Kaedah untuk mengenal pasti sambungan yang berniat jahat termasuk: memeriksa penerbit, membaca komen, memeriksa kod, dan memasang dengan berhati -hati. Langkah -langkah keselamatan juga termasuk: kesedaran keselamatan, tabiat yang baik, kemas kini tetap dan perisian antivirus.

Kod VS boleh digunakan untuk menulis Python dan menyediakan banyak ciri yang menjadikannya alat yang ideal untuk membangunkan aplikasi python. Ia membolehkan pengguna untuk: memasang sambungan python untuk mendapatkan fungsi seperti penyempurnaan kod, penonjolan sintaks, dan debugging. Gunakan debugger untuk mengesan kod langkah demi langkah, cari dan selesaikan kesilapan. Mengintegrasikan Git untuk Kawalan Versi. Gunakan alat pemformatan kod untuk mengekalkan konsistensi kod. Gunakan alat linting untuk melihat masalah yang berpotensi lebih awal.

Kod VS boleh dijalankan pada Windows 8, tetapi pengalaman mungkin tidak hebat. Mula -mula pastikan sistem telah dikemas kini ke patch terkini, kemudian muat turun pakej pemasangan kod VS yang sepadan dengan seni bina sistem dan pasangnya seperti yang diminta. Selepas pemasangan, sedar bahawa beberapa sambungan mungkin tidak sesuai dengan Windows 8 dan perlu mencari sambungan alternatif atau menggunakan sistem Windows yang lebih baru dalam mesin maya. Pasang sambungan yang diperlukan untuk memeriksa sama ada ia berfungsi dengan betul. Walaupun kod VS boleh dilaksanakan pada Windows 8, disyorkan untuk menaik taraf ke sistem Windows yang lebih baru untuk pengalaman dan keselamatan pembangunan yang lebih baik.

Dalam kod VS, anda boleh menjalankan program di terminal melalui langkah -langkah berikut: Sediakan kod dan buka terminal bersepadu untuk memastikan bahawa direktori kod selaras dengan direktori kerja terminal. Pilih arahan Run mengikut bahasa pengaturcaraan (seperti python python your_file_name.py) untuk memeriksa sama ada ia berjalan dengan jayanya dan menyelesaikan kesilapan. Gunakan debugger untuk meningkatkan kecekapan debug.

PHP berasal pada tahun 1994 dan dibangunkan oleh Rasmuslerdorf. Ia pada asalnya digunakan untuk mengesan pelawat laman web dan secara beransur-ansur berkembang menjadi bahasa skrip sisi pelayan dan digunakan secara meluas dalam pembangunan web. Python telah dibangunkan oleh Guidovan Rossum pada akhir 1980 -an dan pertama kali dikeluarkan pada tahun 1991. Ia menekankan kebolehbacaan dan kesederhanaan kod, dan sesuai untuk pengkomputeran saintifik, analisis data dan bidang lain.
