JS 实现缓存算法的示例
这篇文章主要介绍了JS 实现缓存算法的示例(FIFO/LRU),现在分享给大家,也给大家做个参考。
FIFO
最简单的一种缓存算法,设置缓存上限,当达到了缓存上限的时候,按照先进先出的策略进行淘汰,再增加进新的 k-v 。
使用了一个对象作为缓存,一个数组配合着记录添加进对象时的顺序,判断是否到达上限,若到达上限取数组中的第一个元素key,对应删除对象中的键值。
/** * FIFO队列算法实现缓存 * 需要一个对象和一个数组作为辅助 * 数组记录进入顺序 */ class FifoCache{ constructor(limit){ this.limit = limit || 10 this.map = {} this.keys = [] } set(key,value){ let map = this.map let keys = this.keys if (!Object.prototype.hasOwnProperty.call(map,key)) { if (keys.length === this.limit) { delete map[keys.shift()]//先进先出,删除队列第一个元素 } keys.push(key) } map[key] = value//无论存在与否都对map中的key赋值 } get(key){ return this.map[key] } } module.exports = FifoCache
LRU
LRU(Least recently used,最近最少使用)算法。该算法的观点是,最近被访问的数据那么它将来访问的概率就大,缓存满的时候,优先淘汰最无人问津者。
算法实现思路:基于一个双链表的数据结构,在没有满员的情况下,新来的 k-v 放在链表的头部,以后每次获取缓存中的 k-v 时就将该k-v移到最前面,缓存满的时候优先淘汰末尾的。
双向链表的特点,具有头尾指针,每个节点都有 prev(前驱) 和 next(后继) 指针分别指向他的前一个和后一个节点。
关键点:在双链表的插入过程中要注意顺序问题,一定是在保持链表不断的情况下先处理指针,最后才将原头指针指向新插入的元素,在代码的实现中请注意看我在注释中说明的顺序注意点!
class LruCache { constructor(limit) { this.limit = limit || 10 //head 指针指向表头元素,即为最常用的元素 this.head = this.tail = undefined this.map = {} this.size = 0 } get(key, IfreturnNode) { let node = this.map[key] // 如果查找不到含有`key`这个属性的缓存对象 if (node === undefined) return // 如果查找到的缓存对象已经是 tail (最近使用过的) if (node === this.head) { //判断该节点是不是是第一个节点 // 是的话,皆大欢喜,不用移动元素,直接返回 return returnnode ? node : node.value } // 不是头结点,铁定要移动元素了 if (node.prev) { //首先要判断该节点是不是有前驱 if (node === this.tail) { //有前驱,若是尾节点的话多一步,让尾指针指向当前节点的前驱 this.tail = node.prev } //把当前节点的后继交接给当前节点的前驱去指向。 node.prev.next = node.next } if (node.next) { //判断该节点是不是有后继 //有后继的话直接让后继的前驱指向当前节点的前驱 node.next.prev = node.prev //整个一个过程就是把当前节点拿出来,并且保证链表不断,下面开始移动当前节点了 } node.prev = undefined //移动到最前面,所以没了前驱 node.next = this.head //注意!!! 这里要先把之前的排头给接到手!!!!让当前节点的后继指向原排头 if (this.head) { this.head.prev = node //让之前的排头的前驱指向现在的节点 } this.head = node //完成了交接,才能执行此步!不然就找不到之前的排头啦! return IfreturnNode ? node : node.value } set(key, value) { // 之前的算法可以直接存k-v但是现在要把简单的 k-v 封装成一个满足双链表的节点 //1.查看是否已经有了该节点 let node = this.get(key, true) if (!node) { if (this.size === this.limit) { //判断缓存是否达到上限 //达到了,要删最后一个节点了。 if (this.tail) { this.tail = this.tail.prev this.tail.prev.next = undefined //平滑断链之后,销毁当前节点 this.tail.prev = this.tail.next = undefined this.map[this.tail.key] = undefined //当前缓存内存释放一个槽位 this.size-- } node = { key: key } this.map[key] = node if(this.head){//判断缓存里面是不是有节点 this.head.prev = node node.next = this.head }else{ //缓存里没有值,皆大欢喜,直接让head指向新节点就行了 this.head = node this.tail = node } this.size++//减少一个缓存槽位 } } //节点存不存在都要给他重新赋值啊 node.value = value } } module.exports = LruCache
具体的思路就是如果所要get的节点不是头结点(即已经是最近使用的节点了,不需要移动节点位置)要先进行平滑的断链操作,处理好指针指向的关系,拿出需要移动到最前面的节点,进行链表的插入操作。
上面是我整理给大家的,希望今后会对大家有帮助。
相关文章:
Atas ialah kandungan terperinci JS 实现缓存算法的示例. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Ditulis di atas & pemahaman peribadi penulis: Pada masa ini, dalam keseluruhan sistem pemanduan autonomi, modul persepsi memainkan peranan penting Hanya selepas kenderaan pemanduan autonomi yang memandu di jalan raya memperoleh keputusan persepsi yang tepat melalui modul persepsi boleh Peraturan hiliran dan. modul kawalan dalam sistem pemanduan autonomi membuat pertimbangan dan keputusan tingkah laku yang tepat pada masanya dan betul. Pada masa ini, kereta dengan fungsi pemanduan autonomi biasanya dilengkapi dengan pelbagai penderia maklumat data termasuk penderia kamera pandangan sekeliling, penderia lidar dan penderia radar gelombang milimeter untuk mengumpul maklumat dalam modaliti yang berbeza untuk mencapai tugas persepsi yang tepat. Algoritma persepsi BEV berdasarkan penglihatan tulen digemari oleh industri kerana kos perkakasannya yang rendah dan penggunaan mudah, dan hasil keluarannya boleh digunakan dengan mudah untuk pelbagai tugas hiliran.

Cabaran biasa yang dihadapi oleh algoritma pembelajaran mesin dalam C++ termasuk pengurusan memori, multi-threading, pengoptimuman prestasi dan kebolehselenggaraan. Penyelesaian termasuk menggunakan penunjuk pintar, perpustakaan benang moden, arahan SIMD dan perpustakaan pihak ketiga, serta mengikuti garis panduan gaya pengekodan dan menggunakan alat automasi. Kes praktikal menunjukkan cara menggunakan perpustakaan Eigen untuk melaksanakan algoritma regresi linear, mengurus memori dengan berkesan dan menggunakan operasi matriks berprestasi tinggi.

Lapisan bawah fungsi C++ sort menggunakan isihan gabungan, kerumitannya ialah O(nlogn), dan menyediakan pilihan algoritma pengisihan yang berbeza, termasuk isihan pantas, isihan timbunan dan isihan stabil.

Konvergensi kecerdasan buatan (AI) dan penguatkuasaan undang-undang membuka kemungkinan baharu untuk pencegahan dan pengesanan jenayah. Keupayaan ramalan kecerdasan buatan digunakan secara meluas dalam sistem seperti CrimeGPT (Teknologi Ramalan Jenayah) untuk meramal aktiviti jenayah. Artikel ini meneroka potensi kecerdasan buatan dalam ramalan jenayah, aplikasi semasanya, cabaran yang dihadapinya dan kemungkinan implikasi etika teknologi tersebut. Kecerdasan Buatan dan Ramalan Jenayah: Asas CrimeGPT menggunakan algoritma pembelajaran mesin untuk menganalisis set data yang besar, mengenal pasti corak yang boleh meramalkan di mana dan bila jenayah mungkin berlaku. Set data ini termasuk statistik jenayah sejarah, maklumat demografi, penunjuk ekonomi, corak cuaca dan banyak lagi. Dengan mengenal pasti trend yang mungkin terlepas oleh penganalisis manusia, kecerdasan buatan boleh memperkasakan agensi penguatkuasaan undang-undang

Fungsi DECODE dalam Oracle ialah ungkapan bersyarat yang sering digunakan untuk mengembalikan hasil yang berbeza berdasarkan keadaan yang berbeza dalam pernyataan pertanyaan. Artikel ini akan memperkenalkan sintaks, penggunaan dan kod sampel bagi fungsi DECODE secara terperinci. 1. sintaks fungsi DECODE DECODE(expr,search1,result1[,search2,result2,...,default]) expr: ungkapan atau medan yang hendak dibandingkan. carian1,

Spesifikasi lekukan dan contoh bahasa Go adalah bahasa pengaturcaraan yang dibangunkan oleh Google Ia terkenal dengan sintaksnya yang ringkas dan jelas, yang mana spesifikasi lekukan memainkan peranan penting dalam kebolehbacaan dan keindahan kod. Artikel ini akan memperkenalkan spesifikasi lekukan bahasa Go dan menerangkan secara terperinci melalui contoh kod tertentu. Spesifikasi lekukan Dalam bahasa Go, tab digunakan untuk lekukan dan bukannya ruang. Setiap tahap lekukan ialah satu tab, biasanya ditetapkan kepada lebar 4 ruang. Spesifikasi sedemikian menyatukan gaya pengekodan dan membolehkan pasukan bekerjasama untuk menyusun

01Garis prospek Pada masa ini, sukar untuk mencapai keseimbangan yang sesuai antara kecekapan pengesanan dan hasil pengesanan. Kami telah membangunkan algoritma YOLOv5 yang dipertingkatkan untuk pengesanan sasaran dalam imej penderiaan jauh optik resolusi tinggi, menggunakan piramid ciri berbilang lapisan, strategi kepala pengesanan berbilang dan modul perhatian hibrid untuk meningkatkan kesan rangkaian pengesanan sasaran dalam imej penderiaan jauh optik. Menurut set data SIMD, peta algoritma baharu adalah 2.2% lebih baik daripada YOLOv5 dan 8.48% lebih baik daripada YOLOX, mencapai keseimbangan yang lebih baik antara hasil pengesanan dan kelajuan. 02 Latar Belakang & Motivasi Dengan perkembangan pesat teknologi penderiaan jauh, imej penderiaan jauh optik resolusi tinggi telah digunakan untuk menggambarkan banyak objek di permukaan bumi, termasuk pesawat, kereta, bangunan, dll. Pengesanan objek dalam tafsiran imej penderiaan jauh

1. Latar Belakang Pembinaan 58 Portrait Platform Pertama sekali, saya ingin berkongsi dengan anda latar belakang pembinaan 58 Portrait Platform. 1. Pemikiran tradisional platform pemprofilan tradisional tidak lagi mencukupi Membina platform pemprofilan pengguna bergantung pada keupayaan pemodelan gudang data untuk menyepadukan data daripada pelbagai barisan perniagaan untuk membina potret pengguna yang tepat untuk memahami tingkah laku, minat pengguna dan keperluan, dan menyediakan keupayaan sampingan, akhirnya, ia juga perlu mempunyai keupayaan platform data untuk menyimpan, bertanya dan berkongsi data profil pengguna dan menyediakan perkhidmatan profil dengan cekap. Perbezaan utama antara platform pemprofilan perniagaan binaan sendiri dan platform pemprofilan pejabat pertengahan ialah platform pemprofilan binaan sendiri menyediakan satu barisan perniagaan dan boleh disesuaikan atas permintaan platform pertengahan pejabat berkhidmat berbilang barisan perniagaan, mempunyai kompleks pemodelan, dan menyediakan lebih banyak keupayaan umum. 2.58 Potret pengguna latar belakang pembinaan potret di platform tengah 58
