Rumah hujung hadapan web tutorial js 在JS中如何实现计数排序

在JS中如何实现计数排序

Jun 22, 2018 pm 05:14 PM
js jenis Radix algoritma mengira jenis

这篇文章主要介绍了JS实现的计数排序与基数排序算法,结合实例形式简单分析了计数排序与基数排序的原理与JS实现技巧,需要的朋友可以参考下

本文实例讲述了JS实现的计数排序与基数排序算法。分享给大家供大家参考,具体如下:

计数排序

计数排序就是简单的桶排序,一个桶代表数组中一个数出现的个数,所以需要一个和数组数字范围一样大的辅助数组,一般用在范围小于100的排序,时间复杂度为O(n),空间复杂度为数组的数字范围。

/**
 * 范围在 start - end 之间的排序
 * 计数排序需要辅助数组,该辅助数组的长度是待排序数组的范围,所以一般用作范围小于100的排序
 */
function countSort(arr, start, end) {
  var len = arr.length;
  // 桶数组
  var suportArr = new Array(end - start + 1);
  // 结果数组
  var resArr = new Array(len);
  // 初始化桶数组
  for (i = 0; i < suportArr.length; i++) {
    suportArr[i] = 0;
  }
  // 待排序数组中的数组出现,在桶子对应位置+1代表这个数出现的个数+1了
  for (let i = 0; i < len; i++) {
    suportArr[arr[i]]++;
  }
   // 从第1项开始,桶数组加上前一个桶的个数,现在辅助数组的意义变成了每一项的排名了。
  for (let i = 1; i < suportArr.length; i++) {
    suportArr[i] += suportArr[i - 1];
  }
  // 根据辅助数组的排名,从后往前赋值
  for (let i = len - 1; i >= 0; i--) {
    resArr[suportArr[arr[i]] - 1] = arr[i];
    suportArr[arr[i]]--;
  }
  return resArr;
}
Salin selepas log masuk

基数排序

基数排序是多躺的桶排序

var radix = 16; // 基数,可以为任何数,越大趟数越小,但是桶数越多,最好根据最大数字进行定义。
function _roundSort(arr, round, radix) {
  var buckets = new Array(radix);
  for (let i = 0; i < radix; i++) {
    buckets[i] = [];
  }
  // 将数组中的数放进对应的桶子中
  for (let i = 0; i < arr.length; i++) {
    let remainder = Math.floor(arr[i] / (radix ** (round - 1))) % radix;
    buckets[remainder].push(arr[i]);
  }
  // 将数组重新根据桶子进行排序
  var index = 0;
  for (let i = 0; i < buckets.length; i++) {
    for (let j = 0; j < buckets[i].length; j++) {
      arr[index++] = buckets[i][j];
    }
  }
}
function radixSort(arr, round) {
  for (let i = 1; i <= round; i++) {
    _roundSort(arr, i, radix);
  }
  return arr;
}
console.log(radixSort([10,5,5,50,0,155,4622,5,1,4,2154], 4));
Salin selepas log masuk

上面是我整理给大家的,希望今后会对大家有帮助。

相关文章:

在Mac中如何安装nvm(详细教程)

在微信小程序中如何实现时间功能

在webpack中有关生成代码探索

Atas ialah kandungan terperinci 在JS中如何实现计数排序. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

CLIP-BEVFormer: Selia secara eksplisit struktur BEVFormer untuk meningkatkan prestasi pengesanan ekor panjang CLIP-BEVFormer: Selia secara eksplisit struktur BEVFormer untuk meningkatkan prestasi pengesanan ekor panjang Mar 26, 2024 pm 12:41 PM

Ditulis di atas & pemahaman peribadi penulis: Pada masa ini, dalam keseluruhan sistem pemanduan autonomi, modul persepsi memainkan peranan penting Hanya selepas kenderaan pemanduan autonomi yang memandu di jalan raya memperoleh keputusan persepsi yang tepat melalui modul persepsi boleh Peraturan hiliran dan. modul kawalan dalam sistem pemanduan autonomi membuat pertimbangan dan keputusan tingkah laku yang tepat pada masanya dan betul. Pada masa ini, kereta dengan fungsi pemanduan autonomi biasanya dilengkapi dengan pelbagai penderia maklumat data termasuk penderia kamera pandangan sekeliling, penderia lidar dan penderia radar gelombang milimeter untuk mengumpul maklumat dalam modaliti yang berbeza untuk mencapai tugas persepsi yang tepat. Algoritma persepsi BEV berdasarkan penglihatan tulen digemari oleh industri kerana kos perkakasannya yang rendah dan penggunaan mudah, dan hasil keluarannya boleh digunakan dengan mudah untuk pelbagai tugas hiliran.

Melaksanakan Algoritma Pembelajaran Mesin dalam C++: Cabaran dan Penyelesaian Biasa Melaksanakan Algoritma Pembelajaran Mesin dalam C++: Cabaran dan Penyelesaian Biasa Jun 03, 2024 pm 01:25 PM

Cabaran biasa yang dihadapi oleh algoritma pembelajaran mesin dalam C++ termasuk pengurusan memori, multi-threading, pengoptimuman prestasi dan kebolehselenggaraan. Penyelesaian termasuk menggunakan penunjuk pintar, perpustakaan benang moden, arahan SIMD dan perpustakaan pihak ketiga, serta mengikuti garis panduan gaya pengekodan dan menggunakan alat automasi. Kes praktikal menunjukkan cara menggunakan perpustakaan Eigen untuk melaksanakan algoritma regresi linear, mengurus memori dengan berkesan dan menggunakan operasi matriks berprestasi tinggi.

Disyorkan: Projek pengesanan dan pengecaman muka sumber terbuka JS yang sangat baik Disyorkan: Projek pengesanan dan pengecaman muka sumber terbuka JS yang sangat baik Apr 03, 2024 am 11:55 AM

Teknologi pengesanan dan pengecaman muka adalah teknologi yang agak matang dan digunakan secara meluas. Pada masa ini, bahasa aplikasi Internet yang paling banyak digunakan ialah JS Melaksanakan pengesanan muka dan pengecaman pada bahagian hadapan Web mempunyai kelebihan dan kekurangan berbanding dengan pengecaman muka bahagian belakang. Kelebihan termasuk mengurangkan interaksi rangkaian dan pengecaman masa nyata, yang sangat memendekkan masa menunggu pengguna dan meningkatkan pengalaman pengguna termasuk: terhad oleh saiz model, ketepatannya juga terhad. Bagaimana untuk menggunakan js untuk melaksanakan pengesanan muka di web? Untuk melaksanakan pengecaman muka di Web, anda perlu biasa dengan bahasa dan teknologi pengaturcaraan yang berkaitan, seperti JavaScript, HTML, CSS, WebRTC, dll. Pada masa yang sama, anda juga perlu menguasai visi komputer yang berkaitan dan teknologi kecerdasan buatan. Perlu diingat bahawa kerana reka bentuk bahagian Web

Terokai prinsip asas dan pemilihan algoritma bagi fungsi isihan C++ Terokai prinsip asas dan pemilihan algoritma bagi fungsi isihan C++ Apr 02, 2024 pm 05:36 PM

Lapisan bawah fungsi C++ sort menggunakan isihan gabungan, kerumitannya ialah O(nlogn), dan menyediakan pilihan algoritma pengisihan yang berbeza, termasuk isihan pantas, isihan timbunan dan isihan stabil.

Bolehkah kecerdasan buatan meramalkan jenayah? Terokai keupayaan CrimeGPT Bolehkah kecerdasan buatan meramalkan jenayah? Terokai keupayaan CrimeGPT Mar 22, 2024 pm 10:10 PM

Konvergensi kecerdasan buatan (AI) dan penguatkuasaan undang-undang membuka kemungkinan baharu untuk pencegahan dan pengesanan jenayah. Keupayaan ramalan kecerdasan buatan digunakan secara meluas dalam sistem seperti CrimeGPT (Teknologi Ramalan Jenayah) untuk meramal aktiviti jenayah. Artikel ini meneroka potensi kecerdasan buatan dalam ramalan jenayah, aplikasi semasanya, cabaran yang dihadapinya dan kemungkinan implikasi etika teknologi tersebut. Kecerdasan Buatan dan Ramalan Jenayah: Asas CrimeGPT menggunakan algoritma pembelajaran mesin untuk menganalisis set data yang besar, mengenal pasti corak yang boleh meramalkan di mana dan bila jenayah mungkin berlaku. Set data ini termasuk statistik jenayah sejarah, maklumat demografi, penunjuk ekonomi, corak cuaca dan banyak lagi. Dengan mengenal pasti trend yang mungkin terlepas oleh penganalisis manusia, kecerdasan buatan boleh memperkasakan agensi penguatkuasaan undang-undang

Algoritma pengesanan yang dipertingkatkan: untuk pengesanan sasaran dalam imej penderiaan jauh optik resolusi tinggi Algoritma pengesanan yang dipertingkatkan: untuk pengesanan sasaran dalam imej penderiaan jauh optik resolusi tinggi Jun 06, 2024 pm 12:33 PM

01Garis prospek Pada masa ini, sukar untuk mencapai keseimbangan yang sesuai antara kecekapan pengesanan dan hasil pengesanan. Kami telah membangunkan algoritma YOLOv5 yang dipertingkatkan untuk pengesanan sasaran dalam imej penderiaan jauh optik resolusi tinggi, menggunakan piramid ciri berbilang lapisan, strategi kepala pengesanan berbilang dan modul perhatian hibrid untuk meningkatkan kesan rangkaian pengesanan sasaran dalam imej penderiaan jauh optik. Menurut set data SIMD, peta algoritma baharu adalah 2.2% lebih baik daripada YOLOv5 dan 8.48% lebih baik daripada YOLOX, mencapai keseimbangan yang lebih baik antara hasil pengesanan dan kelajuan. 02 Latar Belakang & Motivasi Dengan perkembangan pesat teknologi penderiaan jauh, imej penderiaan jauh optik resolusi tinggi telah digunakan untuk menggambarkan banyak objek di permukaan bumi, termasuk pesawat, kereta, bangunan, dll. Pengesanan objek dalam tafsiran imej penderiaan jauh

Aplikasi algoritma dalam pembinaan 58 platform potret Aplikasi algoritma dalam pembinaan 58 platform potret May 09, 2024 am 09:01 AM

1. Latar Belakang Pembinaan 58 Portrait Platform Pertama sekali, saya ingin berkongsi dengan anda latar belakang pembinaan 58 Portrait Platform. 1. Pemikiran tradisional platform pemprofilan tradisional tidak lagi mencukupi Membina platform pemprofilan pengguna bergantung pada keupayaan pemodelan gudang data untuk menyepadukan data daripada pelbagai barisan perniagaan untuk membina potret pengguna yang tepat untuk memahami tingkah laku, minat pengguna dan keperluan, dan menyediakan keupayaan sampingan, akhirnya, ia juga perlu mempunyai keupayaan platform data untuk menyimpan, bertanya dan berkongsi data profil pengguna dan menyediakan perkhidmatan profil dengan cekap. Perbezaan utama antara platform pemprofilan perniagaan binaan sendiri dan platform pemprofilan pejabat pertengahan ialah platform pemprofilan binaan sendiri menyediakan satu barisan perniagaan dan boleh disesuaikan atas permintaan platform pertengahan pejabat berkhidmat berbilang barisan perniagaan, mempunyai kompleks pemodelan, dan menyediakan lebih banyak keupayaan umum. 2.58 Potret pengguna latar belakang pembinaan potret di platform tengah 58

Hubungan antara js dan vue Hubungan antara js dan vue Mar 11, 2024 pm 05:21 PM

Hubungan antara js dan vue: 1. JS sebagai asas pembangunan Web; 2. Kebangkitan Vue.js sebagai rangka kerja hadapan 3. Hubungan pelengkap antara JS dan Vue; Vue.

See all articles