js中实现滑动窗口的最大值的算法
本篇文章给大家分享的是关于js中实现滑动窗口的最大值的算法,内容很不错,有需要的朋友可以参考一下,希望可以帮助到大家。
题目描述
给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值。例如,如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3,那么一共存在6个滑动窗口,他们的最大值分别为{4,4,6,6,6,5}; 针对数组{2,3,4,2,6,2,5,1}的滑动窗口有以下6个: {[2,3,4],2,6,2,5,1}, {2,[3,4,2],6,2,5,1}, {2,3,[4,2,6],2,5,1}, {2,3,4,[2,6,2],5,1}, {2,3,4,2,[6,2,5],1}, {2,3,4,2,6,[2,5,1]}。
分析
仔细想想,对于数组{2,3,4,2,6,2,5,1}来说,假如窗口大小为3,则整个过程如下:
{[2,3,4],2,6,2,5,1},此时最大值是4
{2,[3,4,2],6,2,5,1},此时最大值是4
{2,3,[4,2,6],2,5,1},此时最大值是6,因为新进入窗口的6比4还大
{2,3,4,[2,6,2],5,1},此时最大值是6
{2,3,4,2,[6,2,5],1},此时最大值是6
{2,3,4,2,6,[2,5,1]},此时最大值是5
可以得出思路是:
保存当前窗口最大值的数组下标maxIndex,滑动一次窗口,若maxIndex还在窗口内,则只需要比较maxIndex处的值和最新进入窗口的值哪个大,新进入的值大则更新maxIndex,否则不需要更新;若maxIndex不在窗口内,则要遍历一次当前窗口的所有值找出新的maxIndex
代码实现
function maxInWindows(arr, size) { if(size > arr.length || size === 0) return []; var res = [], maxIndex = -1; for(var l = 0, r = size-1;r < arr.length;l++, r++){ if(maxIndex < l){ maxIndex = getMaxIndex(arr, l, r); } if(arr[r] > arr[maxIndex]){ maxIndex = r; } res.push(arr[maxIndex]); } return res; } function getMaxIndex(arr, l, r){ var index = l; for(var i = l;i <= r;i++) { if(arr[i] > arr[index]) index = i; } return index; }
相关推荐:
Atas ialah kandungan terperinci js中实现滑动窗口的最大值的算法. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Ditulis di atas & pemahaman peribadi penulis: Pada masa ini, dalam keseluruhan sistem pemanduan autonomi, modul persepsi memainkan peranan penting Hanya selepas kenderaan pemanduan autonomi yang memandu di jalan raya memperoleh keputusan persepsi yang tepat melalui modul persepsi boleh Peraturan hiliran dan. modul kawalan dalam sistem pemanduan autonomi membuat pertimbangan dan keputusan tingkah laku yang tepat pada masanya dan betul. Pada masa ini, kereta dengan fungsi pemanduan autonomi biasanya dilengkapi dengan pelbagai penderia maklumat data termasuk penderia kamera pandangan sekeliling, penderia lidar dan penderia radar gelombang milimeter untuk mengumpul maklumat dalam modaliti yang berbeza untuk mencapai tugas persepsi yang tepat. Algoritma persepsi BEV berdasarkan penglihatan tulen digemari oleh industri kerana kos perkakasannya yang rendah dan penggunaan mudah, dan hasil keluarannya boleh digunakan dengan mudah untuk pelbagai tugas hiliran.

Cabaran biasa yang dihadapi oleh algoritma pembelajaran mesin dalam C++ termasuk pengurusan memori, multi-threading, pengoptimuman prestasi dan kebolehselenggaraan. Penyelesaian termasuk menggunakan penunjuk pintar, perpustakaan benang moden, arahan SIMD dan perpustakaan pihak ketiga, serta mengikuti garis panduan gaya pengekodan dan menggunakan alat automasi. Kes praktikal menunjukkan cara menggunakan perpustakaan Eigen untuk melaksanakan algoritma regresi linear, mengurus memori dengan berkesan dan menggunakan operasi matriks berprestasi tinggi.

Lapisan bawah fungsi C++ sort menggunakan isihan gabungan, kerumitannya ialah O(nlogn), dan menyediakan pilihan algoritma pengisihan yang berbeza, termasuk isihan pantas, isihan timbunan dan isihan stabil.

Konvergensi kecerdasan buatan (AI) dan penguatkuasaan undang-undang membuka kemungkinan baharu untuk pencegahan dan pengesanan jenayah. Keupayaan ramalan kecerdasan buatan digunakan secara meluas dalam sistem seperti CrimeGPT (Teknologi Ramalan Jenayah) untuk meramal aktiviti jenayah. Artikel ini meneroka potensi kecerdasan buatan dalam ramalan jenayah, aplikasi semasanya, cabaran yang dihadapinya dan kemungkinan implikasi etika teknologi tersebut. Kecerdasan Buatan dan Ramalan Jenayah: Asas CrimeGPT menggunakan algoritma pembelajaran mesin untuk menganalisis set data yang besar, mengenal pasti corak yang boleh meramalkan di mana dan bila jenayah mungkin berlaku. Set data ini termasuk statistik jenayah sejarah, maklumat demografi, penunjuk ekonomi, corak cuaca dan banyak lagi. Dengan mengenal pasti trend yang mungkin terlepas oleh penganalisis manusia, kecerdasan buatan boleh memperkasakan agensi penguatkuasaan undang-undang

PHP dan Vue: gandingan sempurna alat pembangunan bahagian hadapan Dalam era perkembangan pesat Internet hari ini, pembangunan bahagian hadapan telah menjadi semakin penting. Memandangkan pengguna mempunyai keperluan yang lebih tinggi dan lebih tinggi untuk pengalaman tapak web dan aplikasi, pembangun bahagian hadapan perlu menggunakan alat yang lebih cekap dan fleksibel untuk mencipta antara muka yang responsif dan interaktif. Sebagai dua teknologi penting dalam bidang pembangunan bahagian hadapan, PHP dan Vue.js boleh dianggap sebagai alat yang sempurna apabila digandingkan bersama. Artikel ini akan meneroka gabungan PHP dan Vue, serta contoh kod terperinci untuk membantu pembaca memahami dan menggunakan kedua-dua ini dengan lebih baik.

01Garis prospek Pada masa ini, sukar untuk mencapai keseimbangan yang sesuai antara kecekapan pengesanan dan hasil pengesanan. Kami telah membangunkan algoritma YOLOv5 yang dipertingkatkan untuk pengesanan sasaran dalam imej penderiaan jauh optik resolusi tinggi, menggunakan piramid ciri berbilang lapisan, strategi kepala pengesanan berbilang dan modul perhatian hibrid untuk meningkatkan kesan rangkaian pengesanan sasaran dalam imej penderiaan jauh optik. Menurut set data SIMD, peta algoritma baharu adalah 2.2% lebih baik daripada YOLOv5 dan 8.48% lebih baik daripada YOLOX, mencapai keseimbangan yang lebih baik antara hasil pengesanan dan kelajuan. 02 Latar Belakang & Motivasi Dengan perkembangan pesat teknologi penderiaan jauh, imej penderiaan jauh optik resolusi tinggi telah digunakan untuk menggambarkan banyak objek di permukaan bumi, termasuk pesawat, kereta, bangunan, dll. Pengesanan objek dalam tafsiran imej penderiaan jauh

Dalam temu bual pembangunan bahagian hadapan, soalan lazim merangkumi pelbagai topik, termasuk asas HTML/CSS, asas JavaScript, rangka kerja dan perpustakaan, pengalaman projek, algoritma dan struktur data, pengoptimuman prestasi, permintaan merentas domain, kejuruteraan bahagian hadapan, corak reka bentuk, dan teknologi dan trend baharu. Soalan penemuduga direka bentuk untuk menilai kemahiran teknikal calon, pengalaman projek dan pemahaman tentang trend industri. Oleh itu, calon harus bersedia sepenuhnya dalam bidang ini untuk menunjukkan kebolehan dan kepakaran mereka.

1. Latar Belakang Pembinaan 58 Portrait Platform Pertama sekali, saya ingin berkongsi dengan anda latar belakang pembinaan 58 Portrait Platform. 1. Pemikiran tradisional platform pemprofilan tradisional tidak lagi mencukupi Membina platform pemprofilan pengguna bergantung pada keupayaan pemodelan gudang data untuk menyepadukan data daripada pelbagai barisan perniagaan untuk membina potret pengguna yang tepat untuk memahami tingkah laku, minat pengguna dan keperluan, dan menyediakan keupayaan sampingan, akhirnya, ia juga perlu mempunyai keupayaan platform data untuk menyimpan, bertanya dan berkongsi data profil pengguna dan menyediakan perkhidmatan profil dengan cekap. Perbezaan utama antara platform pemprofilan perniagaan binaan sendiri dan platform pemprofilan pejabat pertengahan ialah platform pemprofilan binaan sendiri menyediakan satu barisan perniagaan dan boleh disesuaikan atas permintaan platform pertengahan pejabat berkhidmat berbilang barisan perniagaan, mempunyai kompleks pemodelan, dan menyediakan lebih banyak keupayaan umum. 2.58 Potret pengguna latar belakang pembinaan potret di platform tengah 58
