Python实现二叉树的算法实例
本篇文章给大家带来的内容是关于Python实现二叉树的算法实例,有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。
节点定义
class Node(object): def __init__(self, left_child, right_child, value): self._left_child = left_child self._right_child = right_child self._value = value @property def left_child(self): return self._left_child @property def right_child(self): return self._right_child @left_child.setter def left_child(self, value): self._left_child = value @right_child.setter def right_child(self, value): self._right_child = value @property def value(self): return self._value @value.setter def value(self, value): self._value = value
二叉树定义
class Tree(object): def __init__(self, value): self._root = Node(None, None, value=value) @property def root(self): return self._root
先序遍历
递归方式
''' 先序遍历,递归方式 ''' def preoder(root): if not isinstance(root, Node): return None preorder_res = [] if root: preorder_res.append(root.value) preorder_res += preoder(root.left_child) preorder_res += preoder(root.right_child) return preorder_res
非递归方式
''' 先序遍历,非递归方式 ''' def pre_order_not_recursion(root): if not isinstance(root, Node): return None stack = [root] result = [] while stack: node = stack.pop(-1) if node: result.append(node.value) stack.append(node.right_child) stack.append(node.left_child) return result
中序遍历
递归方式
''' 中序遍历,递归方式 ''' def middle_order(root): if not isinstance(root, Node): return None middle_res = [] if root: middle_res += middle_order(root.left_child) middle_res.append(root.value) middle_res += middle_order(root.right_child) return middle_res
非递归方式
''' 中序遍历,非递归方式 ''' def middle_order_bot_recursion(root): if not isinstance(root, Node): return None result = [] stack = [root.right_child, root.value, root.left_child] while stack: temp = stack.pop(-1) if temp: if isinstance(temp, Node): stack.append(temp.right_child) stack.append(temp.value) stack.append(temp.left_child) else: result.append(temp) return result
后序遍历
递归方式
''' 后序遍历,递归方式 ''' def post_order(root): if not isinstance(root, Node): return None post_res = [] if root: post_res += post_order(root.left_child) post_res += post_order(root.right_child) post_res.append(root.value) return post_res
非递归方式
''' 后序遍历,非递归方式 ''' def post_order_not_recursion(root): if not isinstance(root, Node): return None stack = [root.value, root.right_child, root.left_child] result = [] while stack: temp_node = stack.pop(-1) if temp_node: if isinstance(temp_node, Node): stack.append(temp_node.value) stack.append(temp_node.right_child) stack.append(temp_node.left_child) else: result.append(temp_node) return result
分层遍历
''' 分层遍历,使用队列实现 ''' def layer_order(root): if not isinstance(root, Node): return None queue = [root.value, root.left_child, root.right_child] result = [] while queue: temp = queue.pop(0) if temp: if isinstance(temp, Node): queue.append(temp.value) queue.append(temp.left_child) queue.append(temp.right_child) else: result.append(temp) return result
计算二叉树结点个数
''' 计算二叉树结点个数,递归方式 NodeCount(root) = NodeCount(root.left_child) + NodeCount(root.right_child) ''' def node_count(root): if root and not isinstance(root, Node): return None if root: return node_count(root.left_child) + node_count(root.right_child) + 1 else: return 0 ''' 计算二叉树结点个数,非递归方式 借用分层遍历计算 ''' def node_count_not_recursion(root): if root and not isinstance(root, Node): return None return len(layer_order(root))
计算二叉树深度
''' 计算二叉树深度,递归方式 tree_deep(root) = 1 + max(tree_deep(root.left_child), tree_deep(root.right_child)) ''' def tree_deep(root): if root and not isinstance(root, Node): return None if root: return 1 + max(tree_deep(root.left_child), tree_deep(root.right_child)) else: return 0 ''' 计算二叉树深度,非递归方法 同理参考分层遍历的思想 ''' def tree_deep_not_recursion(root): if root and not isinstance(root, Node): return None result = 0 queue = [(root, 1)] while queue: temp_node, temp_layer = queue.pop(0) if temp_node: queue.append((temp_node.left_child, temp_layer+1)) queue.append((temp_node.right_child, temp_layer+1)) result = temp_layer + 1 return result-1
计算二叉树第k层节点个数
''' 计算二叉树第k层节点个数,递归方式 kth_node_count(root, k) = kth_node_count(root.left_count, k-1) + kth_node_count(root.right_count, k-1) ''' def kth_node_count(root, k): if root and not isinstance(root, Node): return None if not root or k <= 0: return 0 if k == 1: return 1 return kth_node_count(root.left_child, k-1) + kth_node_count(root.right_child, k-1) ''' 计算二叉树第K层节点个数,非递归方式 ''' def kth_node_count_not_recursion(root, k): if root and not isinstance(root, Node): return None if not root or k <= 0: return 0 if k == 1: return 1 queue = [(root, 1)] result = 0 while queue: temp_node, temp_layer = queue.pop(0) if temp_node: if temp_layer == k: result += 1 elif temp_layer > k: return result else: queue.append((temp_node.left_child, temp_layer+1)) queue.append((temp_node.right_child, temp_layer+1)) return result
计算二叉树叶子节点个数
''' 计算二叉树叶子节点个数,递归方式 关键点是叶子节点的判断标准,左右孩子皆为None ''' def leaf_count(root): if root and not isinstance(root, Node): return None if not root: return 0 if not root.left_child and not root.right_child: return 1 return leaf_count(root.left_child) + leaf_count(root.right_child)
判断两个二叉树是不是相同
''' 判断两个二叉树是不是相同,递归方式 isSame(root1, root2) = (root1.value == root2.value) and isSame(root1.left, root2.left) and isSame(root1.right, root2.right) ''' def is_same_tree(root1, root2): if not root1 and not root2: return True if root1 and root2: return (root1.value == root2.value) and \ is_same_tree(root1.left_child, root2.left_child) and \ is_same_tree(root1.right_child, root2.right_child) else: return False
判断是否为二分查找树BST
''' 判断是否为二分查找树BST,递归方式 二分查找树的定义搞清楚,二分查找树的中序遍历结果为递增序列 ''' def is_bst_tree(root): if root and not isinstance(root, Node): return None def is_asc(order): for i in range(len(order)-1): if order[i] > order[i+1]: return False return True return is_asc(middle_order_bot_recursion(root))
测试方法
if __name__ == "__main__": tree = Tree(1) tree1 = Tree(1) node6 = Node(None, None, 7) node5 = Node(None, None, 6) node4 = Node(None, None, 5) node3 = Node(None, None, 4) node2 = Node(node5, node6, 3) node1 = Node(node3, node4, 2) tree.root.left_child = node1 tree.root.right_child = node2 tree1.root.left_child = node2 tree1.root.right_child = node2 print(is_bst_tree(tree.root))
Atas ialah kandungan terperinci Python实现二叉树的算法实例. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



PHP dan Python mempunyai kelebihan dan kekurangan mereka sendiri, dan pilihannya bergantung kepada keperluan projek dan keutamaan peribadi. 1.PHP sesuai untuk pembangunan pesat dan penyelenggaraan aplikasi web berskala besar. 2. Python menguasai bidang sains data dan pembelajaran mesin.

Python dan JavaScript mempunyai kelebihan dan kekurangan mereka sendiri dari segi komuniti, perpustakaan dan sumber. 1) Komuniti Python mesra dan sesuai untuk pemula, tetapi sumber pembangunan depan tidak kaya dengan JavaScript. 2) Python berkuasa dalam bidang sains data dan perpustakaan pembelajaran mesin, sementara JavaScript lebih baik dalam perpustakaan pembangunan dan kerangka pembangunan depan. 3) Kedua -duanya mempunyai sumber pembelajaran yang kaya, tetapi Python sesuai untuk memulakan dengan dokumen rasmi, sementara JavaScript lebih baik dengan MDNWebDocs. Pilihan harus berdasarkan keperluan projek dan kepentingan peribadi.

Docker menggunakan ciri -ciri kernel Linux untuk menyediakan persekitaran berjalan yang cekap dan terpencil. Prinsip kerjanya adalah seperti berikut: 1. Cermin digunakan sebagai templat baca sahaja, yang mengandungi semua yang anda perlukan untuk menjalankan aplikasi; 2. Sistem Fail Kesatuan (Unionfs) menyusun pelbagai sistem fail, hanya menyimpan perbezaan, menjimatkan ruang dan mempercepatkan; 3. Daemon menguruskan cermin dan bekas, dan pelanggan menggunakannya untuk interaksi; 4. Ruang nama dan cgroups melaksanakan pengasingan kontena dan batasan sumber; 5. Pelbagai mod rangkaian menyokong interkoneksi kontena. Hanya dengan memahami konsep -konsep teras ini, anda boleh menggunakan Docker dengan lebih baik.

Kod VS boleh digunakan untuk menulis Python dan menyediakan banyak ciri yang menjadikannya alat yang ideal untuk membangunkan aplikasi python. Ia membolehkan pengguna untuk: memasang sambungan python untuk mendapatkan fungsi seperti penyempurnaan kod, penonjolan sintaks, dan debugging. Gunakan debugger untuk mengesan kod langkah demi langkah, cari dan selesaikan kesilapan. Mengintegrasikan Git untuk Kawalan Versi. Gunakan alat pemformatan kod untuk mengekalkan konsistensi kod. Gunakan alat linting untuk melihat masalah yang berpotensi lebih awal.

Dalam kod VS, anda boleh menjalankan program di terminal melalui langkah -langkah berikut: Sediakan kod dan buka terminal bersepadu untuk memastikan bahawa direktori kod selaras dengan direktori kerja terminal. Pilih arahan Run mengikut bahasa pengaturcaraan (seperti python python your_file_name.py) untuk memeriksa sama ada ia berjalan dengan jayanya dan menyelesaikan kesilapan. Gunakan debugger untuk meningkatkan kecekapan debug.

Sambungan kod VS menimbulkan risiko yang berniat jahat, seperti menyembunyikan kod jahat, mengeksploitasi kelemahan, dan melancap sebagai sambungan yang sah. Kaedah untuk mengenal pasti sambungan yang berniat jahat termasuk: memeriksa penerbit, membaca komen, memeriksa kod, dan memasang dengan berhati -hati. Langkah -langkah keselamatan juga termasuk: kesedaran keselamatan, tabiat yang baik, kemas kini tetap dan perisian antivirus.

Kod VS boleh dijalankan pada Windows 8, tetapi pengalaman mungkin tidak hebat. Mula -mula pastikan sistem telah dikemas kini ke patch terkini, kemudian muat turun pakej pemasangan kod VS yang sepadan dengan seni bina sistem dan pasangnya seperti yang diminta. Selepas pemasangan, sedar bahawa beberapa sambungan mungkin tidak sesuai dengan Windows 8 dan perlu mencari sambungan alternatif atau menggunakan sistem Windows yang lebih baru dalam mesin maya. Pasang sambungan yang diperlukan untuk memeriksa sama ada ia berfungsi dengan betul. Walaupun kod VS boleh dilaksanakan pada Windows 8, disyorkan untuk menaik taraf ke sistem Windows yang lebih baru untuk pengalaman dan keselamatan pembangunan yang lebih baik.

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.
