英语不好能学编程么?
英语不好可以学编程吗?相信这是摆在很多学习编程但英语不好的人面前的困惑。那么英语到底影不影响对编程的学习呢?
实际上,英语不好学编程确实是有一些困难的,但也是可以去学编程的,只要不是一点不懂得状态。
因为在实际编程的过程中,编程所用到的单词都是简单易懂的,学起来也不是非常困难。
但是最好把基本的英语单词了解一下,比如C语言中定义一个变量:int a;这里就有一个int,还有a这个字母,如果这两个单词你都看不懂,最好去翻翻英语词典。
Atas ialah kandungan terperinci 英语不好能学编程么?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Kimi: Hanya dalam satu ayat, dalam sepuluh saat sahaja, PPT akan siap. PPT sangat menjengkelkan! Untuk mengadakan mesyuarat, anda perlu mempunyai PPT; untuk menulis laporan mingguan, anda perlu mempunyai PPT untuk membuat pelaburan, anda perlu menunjukkan PPT walaupun anda menuduh seseorang menipu, anda perlu menghantar PPT. Kolej lebih seperti belajar jurusan PPT Anda menonton PPT di dalam kelas dan melakukan PPT selepas kelas. Mungkin, apabila Dennis Austin mencipta PPT 37 tahun lalu, dia tidak menyangka satu hari nanti PPT akan berleluasa. Bercakap tentang pengalaman sukar kami membuat PPT membuatkan kami menitiskan air mata. "Ia mengambil masa tiga bulan untuk membuat PPT lebih daripada 20 muka surat, dan saya menyemaknya berpuluh-puluh kali. Saya rasa ingin muntah apabila saya melihat PPT itu." ialah PPT." Jika anda mengadakan mesyuarat dadakan, anda harus melakukannya

Pada awal pagi 20 Jun, waktu Beijing, CVPR2024, persidangan penglihatan komputer antarabangsa teratas yang diadakan di Seattle, secara rasmi mengumumkan kertas kerja terbaik dan anugerah lain. Pada tahun ini, sebanyak 10 kertas memenangi anugerah, termasuk 2 kertas terbaik dan 2 kertas pelajar terbaik Selain itu, terdapat 2 pencalonan kertas terbaik dan 4 pencalonan kertas pelajar terbaik. Persidangan teratas dalam bidang visi komputer (CV) ialah CVPR, yang menarik sejumlah besar institusi penyelidikan dan universiti setiap tahun. Mengikut statistik, sebanyak 11,532 kertas telah diserahkan tahun ini, 2,719 daripadanya diterima, dengan kadar penerimaan 23.6%. Menurut analisis statistik data CVPR2024 Institut Teknologi Georgia, dari perspektif topik penyelidikan, bilangan kertas terbesar ialah sintesis dan penjanaan imej dan video (Imageandvideosyn

Kami tahu bahawa LLM dilatih pada kelompok komputer berskala besar menggunakan data besar-besaran Tapak ini telah memperkenalkan banyak kaedah dan teknologi yang digunakan untuk membantu dan menambah baik proses latihan LLM. Hari ini, perkara yang ingin kami kongsikan ialah artikel yang mendalami teknologi asas dan memperkenalkan cara menukar sekumpulan "logam kosong" tanpa sistem pengendalian pun menjadi gugusan komputer untuk latihan LLM. Artikel ini datang daripada Imbue, sebuah permulaan AI yang berusaha untuk mencapai kecerdasan am dengan memahami cara mesin berfikir. Sudah tentu, mengubah sekumpulan "logam kosong" tanpa sistem pengendalian menjadi gugusan komputer untuk latihan LLM bukanlah proses yang mudah, penuh dengan penerokaan dan percubaan dan kesilapan, tetapi Imbue akhirnya berjaya melatih LLM dengan 70 bilion parameter proses terkumpul

Editor Laporan Kuasa Mesin: Yang Wen Gelombang kecerdasan buatan yang diwakili oleh model besar dan AIGC telah mengubah cara kita hidup dan bekerja secara senyap-senyap, tetapi kebanyakan orang masih tidak tahu cara menggunakannya. Oleh itu, kami telah melancarkan lajur "AI dalam Penggunaan" untuk memperkenalkan secara terperinci cara menggunakan AI melalui kes penggunaan kecerdasan buatan yang intuitif, menarik dan padat serta merangsang pemikiran semua orang. Kami juga mengalu-alukan pembaca untuk menyerahkan kes penggunaan yang inovatif dan praktikal. Pautan video: https://mp.weixin.qq.com/s/2hX_i7li3RqdE4u016yGhQ Baru-baru ini, vlog kehidupan seorang gadis yang tinggal bersendirian menjadi popular di Xiaohongshu. Animasi gaya ilustrasi, ditambah dengan beberapa perkataan penyembuhan, boleh diambil dengan mudah dalam beberapa hari sahaja.

Retrieval-augmented generation (RAG) ialah teknik yang menggunakan perolehan semula untuk meningkatkan model bahasa. Secara khusus, sebelum model bahasa menjana jawapan, ia mendapatkan semula maklumat yang berkaitan daripada pangkalan data dokumen yang luas dan kemudian menggunakan maklumat ini untuk membimbing proses penjanaan. Teknologi ini boleh meningkatkan ketepatan dan perkaitan kandungan dengan banyak, mengurangkan masalah halusinasi dengan berkesan, meningkatkan kelajuan kemas kini pengetahuan, dan meningkatkan kebolehkesanan penjanaan kandungan. RAG sudah pasti salah satu bidang penyelidikan kecerdasan buatan yang paling menarik. Untuk butiran lanjut tentang RAG, sila rujuk artikel lajur di tapak ini "Apakah perkembangan baharu dalam RAG, yang pakar dalam menebus kekurangan model besar?" Ulasan ini menerangkannya dengan jelas." Tetapi RAG tidak sempurna, dan pengguna sering menghadapi beberapa "titik kesakitan" apabila menggunakannya. Baru-baru ini, penyelesaian AI generatif termaju NVIDIA

Apabila Sora gagal keluar, lawan OpenAI menggunakan senjata mereka untuk memusnahkan jalanan. Jika Sora tidak dibuka untuk digunakan, ia benar-benar akan dicuri! Hari ini, LumaAI pemula San Francisco memainkan kad truf dan melancarkan generasi baharu model penjanaan video AI DreamMachine. Percuma dan tersedia untuk semua orang. Menurut laporan, model itu boleh menghasilkan video realistik berkualiti tinggi berdasarkan penerangan teks ringkas, dengan kesan yang setanding dengan Sora. Sebaik sahaja berita itu keluar, sebilangan besar pengguna menyerbu ke laman web rasmi untuk mencubanya. Walaupun pegawai mendakwa model itu boleh menjana video 120 bingkai dalam masa dua minit sahaja, ramai pengguna telah menunggu berjam-jam di laman web rasmi berikutan lonjakan kunjungan. BarkleyDai, ketua pertumbuhan produk Luma, terpaksa mengulas mengenai Discord

Pada 24 Julai, model besar generasi video Kuaishou Keling AI mengumumkan bahawa model asas telah dinaik taraf semula dan dibuka sepenuhnya untuk ujian dalaman. Kuaishou berkata bahawa untuk membolehkan lebih ramai pengguna menggunakan Keling AI dan lebih baik memenuhi tahap keperluan penggunaan pencipta yang berbeza, mulai sekarang, berdasarkan ujian dalaman terbuka sepenuhnya, ia juga akan melancarkan sistem keahlian secara rasmi untuk kategori berbeza Memberi perkhidmatan fungsian eksklusif yang sepadan. Pada masa yang sama, model asas Keling AI juga telah dinaik taraf semula untuk meningkatkan lagi pengalaman pengguna. Kesan model asas telah dinaik taraf untuk meningkatkan lagi pengalaman pengguna Sejak dikeluarkan lebih sebulan yang lalu, Keling AI telah dinaik taraf dan diulang berkali-kali Dengan pelancaran sistem keahlian ini, kesan model asas Keling AI telah sekali sekali lagi mengalami transformasi. Yang pertama ialah kualiti gambar telah dipertingkatkan dengan ketara Kualiti visual yang dihasilkan melalui model asas yang dinaik taraf

Matriks ini sukar difahami, tetapi ia mungkin berbeza jika anda melihatnya dari perspektif lain. Apabila belajar matematik, kita sering kecewa dengan kesukaran dan keabstrakan pengetahuan yang kita pelajari, tetapi kadang-kadang, hanya dengan mengubah perspektif, kita boleh mencari penyelesaian yang mudah dan intuitif untuk masalah itu. Sebagai contoh, semasa kita mempelajari formula untuk jumlah kuasa dua (a+b)² semasa kita masih kanak-kanak, kita mungkin tidak faham mengapa ia sama dengan a²+2ab+b² Kita hanya tahu bahawa ia ditulis seperti ini dalam buku dan guru meminta kami mengingatnya seperti ini; sehingga satu hari kami melihat saya melihat gambar animasi ini: Tiba-tiba saya sedar bahawa kita boleh memahaminya dari perspektif geometri! Sekarang, rasa pencerahan ini berlaku sekali lagi: matriks bukan negatif boleh ditukar secara sama kepada graf terarah yang sepadan! Seperti yang ditunjukkan dalam rajah di bawah, matriks 3×3 di sebelah kiri sebenarnya boleh