python中常见数据库有哪些
python中常见的数据库有哪些呢?数据库大致分为两大类,第一类是包括关系数据库,第二类是非关系数据库,下面介绍一下这两类数据库的相关知识。
包括关系数据库:sqlite,mysql,mssql
非关系数据库:MongoDB,Redis
1. 连接Sqlite
import sqlite3 import traceback try: # 如果表不存在,就创建 with sqlite3.connect('test.db') as conn: print("Opened database successfully") # 删除表 conn.execute("DROP TABLE IF EXISTS COMPANY") # 创建表 sql = """ CREATE TABLE IF NOT EXISTS COMPANY (ID INTEGER PRIMARY KEY AUTOINCREMENT, NAME TEXT NOT NULL, AGE INT NOT NULL, ADDRESS CHAR(50), SALARY REAL); """ conn.execute(sql) print("create table successfully") # 添加数据 conn.executemany("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY) VALUES (?, ?, ?, ? )", [('Paul', 32, 'California', 20000.00), ('Allen', 25, 'Texas', 15000.00), ('Teddy', 23, 'Norway', 20000.00), ('Mark', 25, 'Rich-Mond ', 65000.00), ('David', 27, 'Texas', 85000.00), ('Kim', 22, 'South-Hall', 45000.00), ('James', 24, 'Houston', 10000.00)]) # conn.execute("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)\ # VALUES ( 'Paul', 32, 'California', 20000.00 )") # # conn.execute("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)\ # VALUES ('Allen', 25, 'Texas', 15000.00 )") # # conn.execute("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)\ # VALUES ('Teddy', 23, 'Norway', 20000.00 )") # # conn.execute("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)\ # VALUES ( 'Mark', 25, 'Rich-Mond ', 65000.00 )") # # conn.execute("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)\ # VALUES ( 'David', 27, 'Texas', 85000.00 )"); # # conn.execute("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)\ # VALUES ( 'Kim', 22, 'South-Hall', 45000.00 )") # # conn.execute("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)\ # VALUES ( 'James', 24, 'Houston', 10000.00 )") # 提交,否则重新运行程序时,表中无数据 conn.commit() print("insert successfully") # 查询表 sql = """ select id,NAME,AGE,ADDRESS,SALARY FROM COMPANY """ result = conn.execute(sql) for row in result: print("-" * 50) # 输出50个-,作为分界线 print("%-10s %s" % ("id", row[0])) # 字段名固定10位宽度,并且左对齐 print("%-10s %s" % ("name", row[1])) print("%-10s %s" % ("age", row[2])) print("%-10s %s" % ("address", row[3])) print("%-10s %.2f" % ("salary", row[4])) # or # print('{:10s} {:.2f}'.format("salary", row[4])) except sqlite3.Error as e: print("sqlite3 Error:", e) traceback.print_exc()
2.连接mysql
相关推荐:《python视频教程》
2.2 使用MySQLdb
2.1使用mysqldb库中的_mysql
import MySQLdb from contextlib import closing import traceback try: # 获取一个数据库连接 with closing(MySQLdb.connect(host='localhost', user='root', passwd='root', db='test', port=3306,charset='utf8')) as conn: print("connect database successfully") with closing(conn.cursor()) as cur: # 删除表 cur.execute("DROP TABLE IF EXISTS COMPANY") # 创建表 sql = """ CREATE TABLE IF NOT EXISTS COMPANY (ID INTEGER PRIMARY KEY NOT NULL auto_increment, NAME TEXT NOT NULL, AGE INT NOT NULL, ADDRESS CHAR(50), SALARY REAL); """ cur.execute(sql) print("create table successfully") # 添加数据 # 在一个conn.execute里面里面执行多个sql语句是非法的 cur.executemany("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY) VALUES ( %s, %s, %s, %s )", [('Paul', 32, 'California', 20000.00), ('Allen', 25, 'Texas', 15000.00), ('Teddy', 23, 'Norway', 20000.00), ('Mark', 25, 'Rich-Mond ', 65000.00), ('David', 27, 'Texas', 85000.00), ('Kim', 22, 'South-Hall', 45000.00), ('James', 24, 'Houston', 10000.00)]) # 提交,否则重新运行程序时,表中无数据 conn.commit() print("insert successfully") # 查询表 sql = """ select id,NAME,AGE,ADDRESS,SALARY FROM COMPANY """ cur.execute(sql) for row in cur.fetchall(): print("-" * 50) # 输出50个-,作为分界线 print("%-10s %s" % ("id", row[0])) # 字段名固定10位宽度,并且左对齐 print("%-10s %s" % ("name", row[1])) print("%-10s %s" % ("age", row[2])) print("%-10s %s" % ("address", row[3])) print("%-10s %s" % ("salary", row[4])) except MySQLdb.Error as e: print("Mysql Error:", e) traceback.print_exc() # 打印错误栈信息
2.2 使用MySQLdb
import MySQLdb from contextlib import closing import traceback try: # 获取一个数据库连接 with closing(MySQLdb.connect(host='localhost', user='root', passwd='root', db='test', port=3306,charset='utf8')) as conn: print("connect database successfully") with closing(conn.cursor()) as cur: # 删除表 cur.execute("DROP TABLE IF EXISTS COMPANY") # 创建表 sql = """ CREATE TABLE IF NOT EXISTS COMPANY (ID INTEGER PRIMARY KEY NOT NULL auto_increment, NAME TEXT NOT NULL, AGE INT NOT NULL, ADDRESS CHAR(50), SALARY REAL); """ cur.execute(sql) print("create table successfully") # 添加数据 # 在一个conn.execute里面里面执行多个sql语句是非法的 cur.executemany("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY) VALUES ( %s, %s, %s, %s )", [('Paul', 32, 'California', 20000.00), ('Allen', 25, 'Texas', 15000.00), ('Teddy', 23, 'Norway', 20000.00), ('Mark', 25, 'Rich-Mond ', 65000.00), ('David', 27, 'Texas', 85000.00), ('Kim', 22, 'South-Hall', 45000.00), ('James', 24, 'Houston', 10000.00)]) # 提交,否则重新运行程序时,表中无数据 conn.commit() print("insert successfully") # 查询表 sql = """ select id,NAME,AGE,ADDRESS,SALARY FROM COMPANY """ cur.execute(sql) for row in cur.fetchall(): print("-" * 50) # 输出50个-,作为分界线 print("%-10s %s" % ("id", row[0])) # 字段名固定10位宽度,并且左对齐 print("%-10s %s" % ("name", row[1])) print("%-10s %s" % ("age", row[2])) print("%-10s %s" % ("address", row[3])) print("%-10s %s" % ("salary", row[4])) except MySQLdb.Error as e: print("Mysql Error:", e) traceback.print_exc() # 打印错误栈信息
2.3使用pymysql
2.1和2.2节使用MySQLdb,不支持Python3.x
pymysql对Python2.x和Python3.x的支持都比较好
import pymysql from contextlib import closing import traceback try: # 获取一个数据库连接,with关键字 表示退出时,conn自动关闭 # with 嵌套上一层的with 要使用closing() with closing(pymysql.connect(host='localhost', user='root', passwd='root', db='test', port=3306, charset='utf8')) as conn: print("connect database successfully") # 获取游标,with关键字 表示退出时,cur自动关闭 with conn.cursor() as cur: # 删除表 cur.execute("DROP TABLE IF EXISTS COMPANY") # 创建表 sql = """ CREATE TABLE IF NOT EXISTS COMPANY (ID INTEGER PRIMARY KEY NOT NULL auto_increment, NAME TEXT NOT NULL, AGE INT NOT NULL, ADDRESS CHAR(50), SALARY REAL); """ cur.execute(sql) print("create table successfully") # 添加数据 # 在一个conn.execute里面里面执行多个sql语句是非法的 cur.executemany("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY) VALUES ( %s, %s, %s, %s )", [('Paul', 32, 'California', 20000.00), ('Allen', 25, 'Texas', 15000.00), ('Teddy', 23, 'Norway', 20000.00), ('Mark', 25, 'Rich-Mond ', 65000.00), ('David', 27, 'Texas', 85000.00), ('Kim', 22, 'South-Hall', 45000.00), ('James', 24, 'Houston', 10000.00)]) # 提交,否则重新运行程序时,表中无数据 conn.commit() print("insert successfully") # 查询表 sql = """ select id,NAME,AGE,ADDRESS,SALARY FROM COMPANY """ cur.execute(sql) for row in cur.fetchall(): print("-" * 50) # 输出50个-,作为分界线 print("%-10s %s" % ("id", row[0])) # 字段名固定10位宽度,并且左对齐 print("%-10s %s" % ("name", row[1])) print("%-10s %s" % ("age", row[2])) print("%-10s %s" % ("address", row[3])) print("%-10s %s" % ("salary", row[4])) except pymysql.Error as e: print("Mysql Error:", e) traceback.print_exc()
3.连接mssql
import pymssql from contextlib import closing try: # 先要保证数据库中有test数据库 # 获取一个数据库连接,with关键字 表示退出时,conn自动关闭 # with 嵌套上一层的with 要使用closing() with closing(pymssql.connect(host='192.168.100.114', user='sa', password='sa12345', database='test', port=1433, charset='utf8')) as conn: print("connect database successfully") # 获取游标,with关键字 表示退出时,cur自动关闭 with conn.cursor() as cur: # 删除表 cur.execute( '''if exists (select 1 from sys.objects where name='COMPANY' and type='U') drop table COMPANY''') # 创建表 sql = """ CREATE TABLE COMPANY (ID INT IDENTITY(1,1) PRIMARY KEY NOT NULL , NAME TEXT NOT NULL, AGE INT NOT NULL, ADDRESS CHAR(50), SALARY REAL); """ cur.execute(sql) print("create table successfully") # 添加数据 # 在一个conn.execute里面里面执行多个sql语句是非法的 cur.executemany("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY) VALUES ( %s, %s, %s, %s )", [('Paul', 32, 'California', 20000.00), ('Allen', 25, 'Texas', 15000.00), ('Teddy', 23, 'Norway', 20000.00), ('Mark', 25, 'Rich-Mond', 65000.00), ('David', 27, 'Texas', 85000.00), ('Kim', 22, 'South-Hall', 45000.00), ('James', 24, 'Houston', 10000.00)]) # 提交,否则重新运行程序时,表中无数据 conn.commit() print("insert successfully") # 查询表 sql = """ select id,NAME,AGE,ADDRESS,SALARY FROM COMPANY """ cur.execute(sql) for row in cur.fetchall(): print("-" * 50) # 输出50个-,作为分界线 print("%-10s %s" % ("id", row[0])) # 字段名固定10位宽度,并且左对齐 print("%-10s %s" % ("name", row[1])) print("%-10s %s" % ("age", row[2])) print("%-10s %s" % ("address", row[3])) print("%-10s %s" % ("salary", row[4])) except pymssql.Error as e: print("mssql Error:", e) # traceback.print_exc()
4.连接MongoDB
import pymongo from pymongo.mongo_client import MongoClient import pymongo.errors import traceback try: # 连接到 mongodb 服务 mongoClient = MongoClient('localhost', 27017) # 连接到数据库 mongoDatabase = mongoClient.test print("connect database successfully") # 获取集合 mongoCollection = mongoDatabase.COMPANY # 移除所有数据 mongoCollection.remove() # 添加数据 mongoCollection.insert_many([{"Name": "Paul", "Age": "32", "Address": "California", "Salary": "20000.00"}, {"Name": "Allen", "Age": "25", "Address": "Texas", "Salary": "15000.00"}, {"Name": "Teddy", "Age": "23", "Address": "Norway", "Salary": "20000.00"}, {"Name": "Mark", "Age": "25", "Address": "Rich-Mond", "Salary": "65000.00"}, {"Name": "David", "Age": "27", "Address": "Texas", "Salary": "85000.00"}, {"Name": "Kim", "Age": "22", "Address": "South-Hall", "Salary": "45000.00"}, {"Name": "James", "Age": "24", "Address": "Houston", "Salary": "10000.00"}, ]) #获取集合中的值 for row in mongoCollection.find(): print("-" * 50) # 输出50个-,作为分界线 print("%-10s %s" % ("_id", row['_id'])) # 字段名固定10位宽度,并且左对齐 print("%-10s %s" % ("name", row['Name'])) print("%-10s %s" % ("age", row['Age'])) print("%-10s %s" % ("address", row['Address'])) print("%-10s %s" % ("salary", row['Salary'])) print('\n\n\n') # 使id自增 mongoCollection.remove() # 创建计数表 mongoDatabase.counters.save({"_id": "people_id", "sequence_value": 0}) # 创建存储过程 mongoDatabase.system_js.getSequenceValue = '''function getSequenceValue(sequenceName){ var sequenceDocument = db.counters.findAndModify({ query: {_id: sequenceName}, update: {$inc:{sequence_value: 1}}, new:true }); return sequenceDocument.sequence_value; }''' mongoCollection.insert_many( [{"_id": mongoDatabase.eval("getSequenceValue('people_id')"), "Name": "Paul", "Age": "32", "Address": "California", "Salary": "20000.00"}, {"_id": mongoDatabase.eval("getSequenceValue('people_id')"), "Name": "Allen", "Age": "25", "Address": "Texas", "Salary": "15000.00"}, {"_id": mongoDatabase.eval("getSequenceValue('people_id')"), "Name": "Teddy", "Age": "23", "Address": "Norway", "Salary": "20000.00"}, {"_id": mongoDatabase.eval("getSequenceValue('people_id')"), "Name": "Mark", "Age": "25", "Address": "Rich-Mond", "Salary": "65000.00"}, {"_id": mongoDatabase.eval("getSequenceValue('people_id')"), "Name": "David", "Age": "27", "Address": "Texas", "Salary": "85000.00"}, {"_id": mongoDatabase.eval("getSequenceValue('people_id')"), "Name": "Kim", "Age": "22", "Address": "South-Hall", "Salary": "45000.00"}, {"_id": mongoDatabase.eval("getSequenceValue('people_id')"), "Name": "James", "Age": "24", "Address": "Houston", "Salary": "10000.00"}, ]) for row in mongoCollection.find(): print("-" * 50) # 输出50个-,作为分界线 print("%-10s %s" % ("_id", int(row['_id']))) # 字段名固定10位宽度,并且左对齐 print("%-10s %s" % ("name", row['Name'])) print("%-10s %s" % ("age", row['Age'])) print("%-10s %s" % ("address", row['Address'])) print("%-10s %s" % ("salary", row['Salary'])) except pymongo.errors.PyMongoError as e: print("mongo Error:", e) traceback.print_exc()
5.连接Redis
5.1使用redis
import redis r = redis.Redis(host='localhost', port=6379, db=0, password="12345") print("connect", r.ping()) # 看信息 info = r.info() # or 查看部分信息 # info = r.info("Server") # 输出信息 items = info.items() for i, (key, value) in enumerate(items): print("item %s----%s:%s" % (i, key, value)) # 删除键和对应的值 r.delete("company") # 可以一次性push一条或多条数据 r.rpush("company", {"id": 1, "Name": "Paul", "Age": "32", "Address": "California", "Salary": "20000.00"}, {"id": 2, "Name": "Allen", "Age": "25", "Address": "Texas", "Salary": "15000.00"}, {"id": 3, "Name": "Teddy", "Age": "23", "Address": "Norway", "Salary": "20000.00"}) r.rpush("company", {"id": 4, "Name": "Mark", "Age": "25", "Address": "Rich-Mond", "Salary": "65000.00"}) r.rpush("company", {"id": 5, "Name": "David", "Age": "27", "Address": "Texas", "Salary": "85000.00"}) r.rpush("company", {"id": 6, "Name": "Kim", "Age": "22", "Address": "South-Hall", "Salary": "45000.00"}) r.rpush("company", {"id": 7, "Name": "James", "Age": "24", "Address": "Houston", "Salary": "10000.00"}) # eval用来将dict格式的字符串转换成dict for row in map(lambda x: eval(x), r.lrange("company", 0, r.llen("company"))): print("-" * 50) # 输出50个-,作为分界线 print("%-10s %s" % ("_id", row['id'])) # 字段名固定10位宽度,并且左对齐 print("%-10s %s" % ("name", row['Name'])) print("%-10s %s" % ("age", row['Age'])) print("%-10s %s" % ("address", row['Address'])) print("%-10s %s" % ("salary", row['Salary'])) # 关闭当前连接 # r.shutdown() #这个是关闭redis服务端
5.2使用pyredis
import pyredis r = pyredis.Client(host='localhost', port=6379, database=0, password="12345") print("connect", r.ping().decode("utf-8")) # 看信息 # info = r.execute("info").decode() # or 查看部分信息 info = r.execute("info", "Server").decode() # 输出信息 print(info) # 删除键和对应的值 r.delete("company") # 可以一次性push一条或多条数据 r.rpush("company", '''{"id": 1, "Name": "Paul", "Age": "32", "Address": "California", "Salary": "20000.00"}''', '''{"id": 2, "Name": "Allen", "Age": "25", "Address": "Texas", "Salary": "15000.00"}''', '''{"id": 3, "Name": "Teddy", "Age": "23", "Address": "Norway", "Salary": "20000.00"}''') r.rpush("company", '''{"id": 4, "Name": "Mark", "Age": "25", "Address": "Rich-Mond", "Salary": "65000.00"}''') r.rpush("company", '''{"id": 5, "Name": "David", "Age": "27", "Address": "Texas", "Salary": "85000.00"}''') r.rpush("company", '''{"id": 6, "Name": "Kim", "Age": "22", "Address": "South-Hall", "Salary": "45000.00"}''') r.rpush("company", '''{"id": 7, "Name": "James", "Age": "24", "Address": "Houston", "Salary": "10000.00"}''') # eval用来将dict格式的字符串转换成dict for row in map(lambda x: eval(x), r.lrange("company", 0, r.llen("company"))): print("-" * 50) # 输出50个-,作为分界线 print("%-10s %s" % ("_id", row['id'])) # 字段名固定10位宽度,并且左对齐 print("%-10s %s" % ("name", row['Name'])) print("%-10s %s" % ("age", row['Age'])) print("%-10s %s" % ("address", row['Address'])) print("%-10s %s" % ("salary", row['Salary'])) # 关闭当前连接 r.close()
Atas ialah kandungan terperinci python中常见数据库有哪些. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



MySQL mempunyai versi komuniti percuma dan versi perusahaan berbayar. Versi komuniti boleh digunakan dan diubahsuai secara percuma, tetapi sokongannya terhad dan sesuai untuk aplikasi dengan keperluan kestabilan yang rendah dan keupayaan teknikal yang kuat. Edisi Enterprise menyediakan sokongan komersil yang komprehensif untuk aplikasi yang memerlukan pangkalan data yang stabil, boleh dipercayai, berprestasi tinggi dan bersedia membayar sokongan. Faktor yang dipertimbangkan apabila memilih versi termasuk kritikal aplikasi, belanjawan, dan kemahiran teknikal. Tidak ada pilihan yang sempurna, hanya pilihan yang paling sesuai, dan anda perlu memilih dengan teliti mengikut keadaan tertentu.

MySQL adalah sistem pengurusan pangkalan data sumber terbuka. 1) Buat Pangkalan Data dan Jadual: Gunakan perintah Createdatabase dan Createtable. 2) Operasi Asas: Masukkan, Kemas kini, Padam dan Pilih. 3) Operasi lanjutan: Sertai, subquery dan pemprosesan transaksi. 4) Kemahiran Debugging: Semak sintaks, jenis data dan keizinan. 5) Cadangan Pengoptimuman: Gunakan indeks, elakkan pilih* dan gunakan transaksi.

Panduan Pengoptimuman Prestasi Pangkalan Data MySQL Dalam aplikasi yang berintensifkan sumber, pangkalan data MySQL memainkan peranan penting dan bertanggungjawab untuk menguruskan urus niaga besar-besaran. Walau bagaimanapun, apabila skala aplikasi berkembang, kemunculan prestasi pangkalan data sering menjadi kekangan. Artikel ini akan meneroka satu siri strategi pengoptimuman prestasi MySQL yang berkesan untuk memastikan aplikasi anda tetap cekap dan responsif di bawah beban tinggi. Kami akan menggabungkan kes-kes sebenar untuk menerangkan teknologi utama yang mendalam seperti pengindeksan, pengoptimuman pertanyaan, reka bentuk pangkalan data dan caching. 1. Reka bentuk seni bina pangkalan data dan seni bina pangkalan data yang dioptimumkan adalah asas pengoptimuman prestasi MySQL. Berikut adalah beberapa prinsip teras: Memilih jenis data yang betul dan memilih jenis data terkecil yang memenuhi keperluan bukan sahaja dapat menjimatkan ruang penyimpanan, tetapi juga meningkatkan kelajuan pemprosesan data.

MySQL boleh berjalan tanpa sambungan rangkaian untuk penyimpanan dan pengurusan data asas. Walau bagaimanapun, sambungan rangkaian diperlukan untuk interaksi dengan sistem lain, akses jauh, atau menggunakan ciri -ciri canggih seperti replikasi dan clustering. Di samping itu, langkah -langkah keselamatan (seperti firewall), pengoptimuman prestasi (pilih sambungan rangkaian yang betul), dan sandaran data adalah penting untuk menyambung ke Internet.

Hadidb: Pangkalan data Python yang ringan, tinggi, Hadidb (Hadidb) adalah pangkalan data ringan yang ditulis dalam Python, dengan tahap skalabilitas yang tinggi. Pasang HadIdb menggunakan pemasangan PIP: Pengurusan Pengguna PipInstallHadidB Buat Pengguna: CreateUser () Kaedah untuk membuat pengguna baru. Kaedah pengesahan () mengesahkan identiti pengguna. dariHadidb.OperationImportuserer_Obj = user ("admin", "admin") user_obj.

Tidak mustahil untuk melihat kata laluan MongoDB secara langsung melalui Navicat kerana ia disimpan sebagai nilai hash. Cara mendapatkan kata laluan yang hilang: 1. Tetapkan semula kata laluan; 2. Periksa fail konfigurasi (mungkin mengandungi nilai hash); 3. Semak Kod (boleh kata laluan Hardcode).

MySQL Workbench boleh menyambung ke MariaDB, dengan syarat bahawa konfigurasi adalah betul. Mula -mula pilih "MariaDB" sebagai jenis penyambung. Dalam konfigurasi sambungan, tetapkan host, port, pengguna, kata laluan, dan pangkalan data dengan betul. Apabila menguji sambungan, periksa bahawa perkhidmatan MariaDB dimulakan, sama ada nama pengguna dan kata laluan betul, sama ada nombor port betul, sama ada firewall membenarkan sambungan, dan sama ada pangkalan data itu wujud. Dalam penggunaan lanjutan, gunakan teknologi penyatuan sambungan untuk mengoptimumkan prestasi. Kesilapan biasa termasuk kebenaran yang tidak mencukupi, masalah sambungan rangkaian, dan lain -lain. Apabila kesilapan debugging, dengan teliti menganalisis maklumat ralat dan gunakan alat penyahpepijatan. Mengoptimumkan konfigurasi rangkaian dapat meningkatkan prestasi

Untuk persekitaran pengeluaran, pelayan biasanya diperlukan untuk menjalankan MySQL, atas alasan termasuk prestasi, kebolehpercayaan, keselamatan, dan skalabilitas. Pelayan biasanya mempunyai perkakasan yang lebih kuat, konfigurasi berlebihan dan langkah keselamatan yang lebih ketat. Untuk aplikasi kecil, rendah, MySQL boleh dijalankan pada mesin tempatan, tetapi penggunaan sumber, risiko keselamatan dan kos penyelenggaraan perlu dipertimbangkan dengan teliti. Untuk kebolehpercayaan dan keselamatan yang lebih besar, MySQL harus digunakan di awan atau pelayan lain. Memilih konfigurasi pelayan yang sesuai memerlukan penilaian berdasarkan beban aplikasi dan jumlah data.
