学python下什么软件
Python作为一门起源比较的编程语言,开发软件其实非常多,既有代码编辑器,也有IDE集成环境,下面我简单介绍几个不错的Python开发软件,感兴趣的朋友可以自己尝试一下:
VS Code(推荐学习:Python视频教程)
这是一个免费、开源、跨平台的代码编辑器,由微软自主设计研发,界面风格和VS非常像,但没有VS那么臃肿庞大,运行速度快、占用内存少,支持常见的自动补全、代码高亮、语法提示、Git等功能,安装Python插件后,可以直接编辑运行Python程序,对于日常Python开发或者入门来说,是一个非常不错的选择。
Sublime Text
这也是一个非常不错的代码编辑器,基本功能和VS Code差不多,轻便灵活、运行速度快,文本编辑功能强大,常见的自动补全、语法检查、语法提示功能都能很好支持,配置好本地Python解释器路径后,也可以当做一个非常不错的Python开发软件来使用。
Atom
这也是一个免费、开源、跨平台的代码编辑器,由GitHub专门为广大程序员设计研发,基本功能和前2个编辑器差不多,支持常见的智能补全、代码高亮、语法检查等功能,安装Python插件后,也可以直接编辑运行Python程序,只不过偶尔会出现内存占用率比较高的问题。
Vim
这是Linux环境下使用比较多的一个文本编辑器,轻便灵活,插件扩展众多,可以自定义配置环境,和各种编程语言都能混搭,而且效果良好,安装Python后,也可以直接当做一个非常不错的Python开发软件来使用。
Visual Studio
这应该是目前使用最多的IDE环境了,集成了非常多的开发环境,新的版本中也开始支持Python开发,勾选Python后,也可以直接编辑、调试、运行Python程序,功能强大,对于已经熟悉VS的朋友来说,那么VS就是一个非常不错的Python开发软件。
PyCharm
这是一个专门用于Python开发的软件,由Jetbrains公司设计研发,在业界非常流行,也非常受欢迎,支持代码重构、代码分析、单元测试等高级功能,因此开发、调试、运行效率更高,本身自带了许多工程模板,可以快速创建Flask、Django等Web应用,因此对于Python开发来说,可以说是一个利器。
至此,我们就介绍完了这6个非常不错的Python开发软件。对于日常开发Python来说,完全够用了,当然,还有许多其他Python软件开发,像Spyder,Notebook等,也都非常不错,网上也有相关教程和资料,感兴趣的话,可以搜一下,希望以上分享的内容能对你有所帮助吧,也欢迎大家评论、留言进行补充。
更多Python相关技术文章,请访问Python教程栏目进行学习!
Atas ialah kandungan terperinci 学python下什么软件. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Untuk membaca giliran dari Redis, anda perlu mendapatkan nama giliran, membaca unsur -unsur menggunakan arahan LPOP, dan memproses barisan kosong. Langkah-langkah khusus adalah seperti berikut: Dapatkan nama giliran: Namakannya dengan awalan "giliran:" seperti "giliran: my-queue". Gunakan arahan LPOP: Keluarkan elemen dari kepala barisan dan kembalikan nilainya, seperti LPOP Queue: My-Queue. Memproses Baris kosong: Jika barisan kosong, LPOP mengembalikan nihil, dan anda boleh menyemak sama ada barisan wujud sebelum membaca elemen.

Soalan: Bagaimana untuk melihat versi pelayan Redis? Gunakan alat perintah Redis-cli -version untuk melihat versi pelayan yang disambungkan. Gunakan arahan pelayan INFO untuk melihat versi dalaman pelayan dan perlu menghuraikan dan mengembalikan maklumat. Dalam persekitaran kluster, periksa konsistensi versi setiap nod dan boleh diperiksa secara automatik menggunakan skrip. Gunakan skrip untuk mengautomasikan versi tontonan, seperti menyambung dengan skrip Python dan maklumat versi percetakan.

Langkah -langkah untuk memulakan pelayan Redis termasuk: Pasang Redis mengikut sistem operasi. Mulakan perkhidmatan Redis melalui Redis-server (Linux/macOS) atau redis-server.exe (Windows). Gunakan redis-cli ping (linux/macOS) atau redis-cli.exe ping (windows) perintah untuk memeriksa status perkhidmatan. Gunakan klien Redis, seperti redis-cli, python, atau node.js untuk mengakses pelayan.

Tetapan saiz memori Redis perlu mempertimbangkan faktor -faktor berikut: Jumlah data dan trend pertumbuhan: Anggarkan saiz dan kadar pertumbuhan data yang disimpan. Jenis Data: Jenis yang berbeza (seperti senarai, hash) menduduki memori yang berbeza. Dasar caching: cache penuh, cache separa, dan dasar pemisahan mempengaruhi penggunaan memori. Puncak Perniagaan: Tinggalkan memori yang cukup untuk menangani puncak lalu lintas.

Redis Kegigihan akan mengambil ingatan tambahan, RDB sementara meningkatkan penggunaan memori apabila menjana snapshot, dan AOF terus mengambil ingatan apabila memasuki log. Faktor yang mempengaruhi termasuk jumlah data, dasar kegigihan dan konfigurasi REDIS. Untuk mengurangkan kesan, anda boleh mengkonfigurasi dasar snapshot RDB, mengoptimumkan konfigurasi AOF, menaik taraf perkakasan dan memantau penggunaan memori. Selain itu, adalah penting untuk mencari keseimbangan antara prestasi dan keselamatan data.

Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

** Parameter teras konfigurasi memori Redis adalah MaxMemory, yang menghadkan jumlah memori yang boleh digunakan oleh Redis. Apabila had ini melebihi, REDIS melaksanakan strategi penghapusan mengikut dasar-dasar MaxMemory, termasuk: noeviction (secara langsung menolak menulis), AllKeys-LRU/Volatile-LRU (dihapuskan oleh LRU), allkeys-rawak-rawak-rawak (dihapuskan oleh penghapusan rawak), dan volatili-volatili-ttl), dan volatili-volatili-ttl (tidak meniru-rawak), dan volatili-ttl (tidak meniminasi volatili), dan volatili-ttl (tidak meniminasi volatili), dan volatili-ttl (tidak meniru-rawak), dan volatili-ttl (eximination-ttl) Parameter lain yang berkaitan termasuk MaxMemory-Samples (kuantiti sampel LRU), RDB-Mampatan
