python怎么分析数据?
在不同的场景下通常可以采用不同的数据分析方式,比如对于大部分职场人来说,Excel可以满足大部分数据分析场景,当数据量比较大的时候可以通过学习数据库知识来完成数据分析任务,对于更复杂的数据分析场景可以通过BI工具来完成数据分析。通过工具进行数据分析一方面比较便捷,另一方面也比较容易掌握。
但是针对于更加开放的数据分析场景时,就需要通过编程的方式来进行数据分析了,比如通过机器学习的方式进行数据分析,而Python语言在机器学习领域有广泛的应用。采用机器学习的方式进行数据分析需要经过五个步骤,分别是数据准备、算法设计、算法训练、算法验证和算法应用。
采用机器学习进行数据分析时,首先要了解一下常见的算法,比如knn、决策树、支持向量机、朴素贝叶斯等等,这些算法都是机器学习领域非常常见的算法,也具有比较广泛的应用场景。当然,学习这些算法也需要具备一定的线性代数和概率论基础。学习不同的算法最好结合相应的应用场景进行分析,有的场景也需要结合多个算法进行分析。另外,通过场景来学习算法的使用会尽快建立画面感。
采用Python进行数据分析还需要掌握一系列库的使用,包括Numpy(矩阵运算库)、Scipy(统计运算库)、Matplotlib(绘图库)、pandas(数据集操作)、Sympy(数值运算库)等库,这些库在Python进行数据分析时有广泛的应用。
相关推荐:《Python教程》
Atas ialah kandungan terperinci python怎么分析数据. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!