bootstrap置信区间如何求
bootstrap置信区间:
假设总体的分布F未知,但有一个容量为n的来自分布F的数据样本,自这一样本按有放回抽样的方法抽取一个容量为n的样本,这种样本称为bootstrap样本。相继地、独立地自原始样本中抽取很多个bootstrap样本,利用这些样本对总体F进行统计推断,这种方法称为非参数bootstrap方法,又称自助法。
使用bootstrap方法可以求得变量(参数)的置信区间,称作bootstrap置信区间。
bootstrap置信区间:
使用Python计算bootstrap置信区间:
这里以一维数据为例,取样本均值作为样本估计量。代码如下:
import numpy as np def average(data): return sum(data) / len(data) def bootstrap(data, B, c, func): """ 计算bootstrap置信区间 :param data: array 保存样本数据 :param B: 抽样次数 通常B>=1000 :param c: 置信水平 :param func: 样本估计量 :return: bootstrap置信区间上下限 """ array = np.array(data) n = len(array) sample_result_arr = [] for i in range(B): index_arr = np.random.randint(0, n, size=n) data_sample = array[index_arr] sample_result = func(data_sample) sample_result_arr.append(sample_result) a = 1 - c k1 = int(B * a / 2) k2 = int(B * (1 - a / 2)) auc_sample_arr_sorted = sorted(sample_result_arr) lower = auc_sample_arr_sorted[k1] higher = auc_sample_arr_sorted[k2] return lower, higher if __name__ == '__main__': result = bootstrap(np.random.randint(0, 50, 50), 1000, 0.95, average) print(result)
输出:
(20.48, 28.32)
Atas ialah kandungan terperinci bootstrap置信区间如何求. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Perkenalkan Bootstrap dalam Eclipse dalam lima langkah: Muat turun fail Bootstrap dan nyahzipnya. Import folder Bootstrap ke dalam projek. Tambah pergantungan Bootstrap. Muatkan Bootstrap CSS dan JS dalam fail HTML. Mula menggunakan Bootstrap untuk meningkatkan antara muka pengguna anda.

Langkah tafsiran ujian kesan pengantaraan Bootstrap dalam Stata: Semak tanda pekali: Tentukan arah positif atau negatif kesan pengantaraan. Nilai p ujian: kurang daripada 0.05 menunjukkan bahawa kesan pengantaraan adalah signifikan. Semak selang keyakinan: tidak mengandungi sifar menunjukkan bahawa kesan pengantaraan adalah ketara. Membandingkan nilai p median: kurang daripada 0.05 menyokong lagi kepentingan kesan pengantaraan.

Langkah-langkah untuk memperkenalkan Bootstrap dalam IntelliJ IDEA: Buat projek baharu dan pilih "Aplikasi Web". Tambah pergantungan Maven "Bootstrap". Buat fail HTML dan tambah rujukan Bootstrap. Gantikan dengan laluan sebenar ke fail CSS Bootstrap. Jalankan fail HTML untuk menggunakan gaya Bootstrap. Petua: Gunakan CDN untuk mengimport Bootstrap atau menyesuaikan templat fail HTML.

Mengenai Llama3, keputusan ujian baharu telah dikeluarkan - komuniti penilaian model besar LMSYS mengeluarkan senarai kedudukan model besar Llama3 menduduki tempat kelima, dan terikat untuk tempat pertama dengan GPT-4 dalam kategori Bahasa Inggeris. Gambar ini berbeza daripada Penanda Aras yang lain Senarai ini berdasarkan pertempuran satu lawan satu antara model, dan penilai dari seluruh rangkaian membuat cadangan dan skor mereka sendiri. Pada akhirnya, Llama3 menduduki tempat kelima dalam senarai, diikuti oleh tiga versi GPT-4 dan Claude3 Super Cup Opus yang berbeza. Dalam senarai tunggal Inggeris, Llama3 mengatasi Claude dan terikat dengan GPT-4. Mengenai keputusan ini, ketua saintis Meta LeCun sangat gembira, tweet semula dan

Ujian Bootstrap menggunakan teknologi pensampelan semula untuk menilai kebolehpercayaan ujian statistik dan digunakan untuk membuktikan kepentingan kesan pengantaraan: pertama, hitung selang keyakinan kesan langsung, kesan tidak langsung dan kesan pengantaraan; jenis pengantaraan mengikut kaedah Baron dan Kenny atau Sobel dan akhirnya menganggarkan selang keyakinan untuk kesan tidak langsung semula jadi.

Ujian pengantaraan Bootstrap menilai kesan pengantaraan dengan mengambil semula data beberapa kali: Selang keyakinan kesan tidak langsung: menunjukkan anggaran julat kesan pengantaraan Jika selang tidak mengandungi sifar, kesannya adalah ketara. p-value: Menilai kebarangkalian bahawa selang keyakinan tidak mengandungi sifar, dengan nilai kurang daripada 0.05 menunjukkan signifikan. Saiz sampel: Bilangan sampel data yang digunakan untuk analisis. Masa subsampling Bootstrap: bilangan persampelan berulang (500-2000 kali). Jika selang keyakinan tidak mengandungi sifar dan nilai p kurang daripada 0.05, kesan pengantaraan adalah signifikan, menunjukkan bahawa pembolehubah pengantara menerangkan hubungan antara pembolehubah bebas dan bersandar.

Perbezaan utama antara Bootstrap dan Spring Boot ialah Bootstrap ialah rangka kerja CSS yang ringan untuk penggayaan tapak web, manakala Spring Boot ialah rangka kerja belakang luar biasa yang berkuasa untuk pembangunan aplikasi web Java. Bootstrap adalah berdasarkan CSS dan HTML, manakala Spring Boot adalah berdasarkan Java dan rangka kerja Spring. Bootstrap memfokuskan pada mencipta rupa dan rasa tapak web, manakala Spring Boot memfokuskan pada fungsi bahagian belakang. Spring Boot boleh disepadukan dengan Bootstrap untuk mencipta berfungsi sepenuhnya, cantik

Eksport keputusan ujian kesan pengantaraan Bootstrap dalam Stata: Simpan keputusan: siaran bootstrap Cipta senarai pembolehubah: vars tempatan: coef se ci Eksport keputusan (CSV): eksport hasil yang dibataskan.csv, varlist(`vars') gantikan nolabel koma
