大数据学习什么内容
1、Java编程
Java编程是大数据开发的基础,大数据中很多技术都是使用Java编写的,如Hadoop、Spark、mapreduce等,因此,想要学好大数据,Java编程是必备技能!
(推荐学习:java入门程序)
2、Linux运维
企业大数据开发往往是在Linux操作系统下完成的,因此,想从事大数据相关工作,需要掌握Linux系统操作方法和相关命令。
3、Hadoop
Hadoop是一个能够对大量数据进行分布式处理的软件框架,HDFS和MapReduce是其核心设计,HDFS为海量的数据提供了存储,MapReduce为海量的数据提供了计算,是大数据开发必不可少的框架技能。
4、Zookeeper
ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。
5、Hive
hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行,十分适合数据仓库的统计分析。
6、Hbase
这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多
7、Kafka
Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据,通过Hadoop的并行加载机制来统一线上和离线的消息处理,通过集群来提供实时的消息。
8、Spark
Spark 是专为大规模数据处理而设计的快速通用的计算引擎,拥有Hadoop MapReduce所具有的优点,但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。
Atas ialah kandungan terperinci 大数据学习什么内容. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas





Kemahiran pemprosesan struktur data besar: Pecahan: Pecahkan set data dan proseskannya dalam bahagian untuk mengurangkan penggunaan memori. Penjana: Hasilkan item data satu demi satu tanpa memuatkan keseluruhan set data, sesuai untuk set data tanpa had. Penstriman: Baca fail atau hasil pertanyaan baris demi baris, sesuai untuk fail besar atau data jauh. Storan luaran: Untuk set data yang sangat besar, simpan data dalam pangkalan data atau NoSQL.

Dalam era Internet, data besar telah menjadi sumber baharu Dengan peningkatan berterusan teknologi analisis data besar, permintaan untuk pengaturcaraan data besar menjadi semakin mendesak. Sebagai bahasa pengaturcaraan yang digunakan secara meluas, kelebihan unik C++ dalam pengaturcaraan data besar telah menjadi semakin menonjol. Di bawah ini saya akan berkongsi pengalaman praktikal saya dalam pengaturcaraan data besar C++. 1. Memilih struktur data yang sesuai Memilih struktur data yang sesuai adalah bahagian penting dalam menulis program data besar yang cekap. Terdapat pelbagai struktur data dalam C++ yang boleh kita gunakan, seperti tatasusunan, senarai terpaut, pepohon, jadual cincang, dsb.

AEC/O (Seni Bina, Kejuruteraan & Pembinaan/Operasi) merujuk kepada perkhidmatan komprehensif yang menyediakan reka bentuk seni bina, reka bentuk kejuruteraan, pembinaan dan operasi dalam industri pembinaan. Pada tahun 2024, industri AEC/O menghadapi cabaran yang berubah-ubah di tengah-tengah kemajuan teknologi. Tahun ini dijangka menyaksikan integrasi teknologi termaju, menandakan anjakan paradigma dalam reka bentuk, pembinaan dan operasi. Sebagai tindak balas kepada perubahan ini, industri mentakrifkan semula proses kerja, melaraskan keutamaan, dan meningkatkan kerjasama untuk menyesuaikan diri dengan keperluan dunia yang berubah dengan pantas. Lima arah aliran utama berikut dalam industri AEC/O akan menjadi tema utama pada 2024, mengesyorkan ia bergerak ke arah masa depan yang lebih bersepadu, responsif dan mampan: rantaian bekalan bersepadu, pembuatan pintar

1. Latar Belakang Pembinaan 58 Portrait Platform Pertama sekali, saya ingin berkongsi dengan anda latar belakang pembinaan 58 Portrait Platform. 1. Pemikiran tradisional platform pemprofilan tradisional tidak lagi mencukupi Membina platform pemprofilan pengguna bergantung pada keupayaan pemodelan gudang data untuk menyepadukan data daripada pelbagai barisan perniagaan untuk membina potret pengguna yang tepat untuk memahami tingkah laku, minat pengguna dan keperluan, dan menyediakan keupayaan sampingan, akhirnya, ia juga perlu mempunyai keupayaan platform data untuk menyimpan, bertanya dan berkongsi data profil pengguna dan menyediakan perkhidmatan profil dengan cekap. Perbezaan utama antara platform pemprofilan perniagaan binaan sendiri dan platform pemprofilan pejabat pertengahan ialah platform pemprofilan binaan sendiri menyediakan satu barisan perniagaan dan boleh disesuaikan atas permintaan platform pertengahan pejabat berkhidmat berbilang barisan perniagaan, mempunyai kompleks pemodelan, dan menyediakan lebih banyak keupayaan umum. 2.58 Potret pengguna latar belakang pembinaan potret di platform tengah 58

Dalam era data besar hari ini, pemprosesan dan analisis data telah menjadi sokongan penting untuk pembangunan pelbagai industri. Sebagai bahasa pengaturcaraan dengan kecekapan pembangunan tinggi dan prestasi unggul, bahasa Go telah secara beransur-ansur menarik perhatian dalam bidang data besar. Walau bagaimanapun, berbanding dengan bahasa lain seperti Java dan Python, bahasa Go mempunyai sokongan yang agak tidak mencukupi untuk rangka kerja data besar, yang telah menyebabkan masalah bagi sesetengah pembangun. Artikel ini akan meneroka sebab utama kekurangan rangka kerja data besar dalam bahasa Go, mencadangkan penyelesaian yang sepadan dan menggambarkannya dengan contoh kod khusus. 1. Pergi bahasa

Sebagai bahasa pengaturcaraan sumber terbuka, bahasa Go secara beransur-ansur mendapat perhatian dan penggunaan yang meluas dalam beberapa tahun kebelakangan ini. Ia digemari oleh pengaturcara kerana kesederhanaan, kecekapan, dan keupayaan pemprosesan serentak yang berkuasa. Dalam bidang pemprosesan data besar, bahasa Go juga mempunyai potensi yang kuat Ia boleh digunakan untuk memproses data besar-besaran, mengoptimumkan prestasi, dan boleh disepadukan dengan baik dengan pelbagai alatan dan rangka kerja pemprosesan data besar. Dalam artikel ini, kami akan memperkenalkan beberapa konsep asas dan teknik pemprosesan data besar dalam bahasa Go dan menunjukkan cara menggunakan bahasa Go melalui contoh kod tertentu.

Pelancaran produk musim luruh 2023 Yizhiwei telah berakhir dengan jayanya! Marilah kita sama-sama meninjau sorotan persidangan itu! 1. Keterbukaan inklusif pintar menjadikan kembar digital produktif Ning Haiyuan, pengasas bersama Kangaroo Cloud dan Ketua Pegawai Eksekutif Yizhiwei, membuat ucapan pembukaan: Pada mesyuarat strategik syarikat tahun ini, kami meletakkan hala tuju utama penyelidikan dan pembangunan produk sebagai “inklusif pintar. keterbukaan” "Tiga keupayaan teras, memfokuskan pada tiga kata kunci teras "keterbukaan inklusif pintar", kami seterusnya mencadangkan matlamat pembangunan "menjadikan kembar digital sebagai kuasa yang produktif". 2. EasyTwin: Teroka enjin kembar digital baharu yang lebih mudah digunakan 1. Dari 0.1 hingga 1.0, teruskan meneroka enjin pemaparan gabungan kembar digital untuk mendapatkan penyelesaian yang lebih baik dengan mod penyuntingan 3D yang matang, pelan tindakan interaktif yang mudah dan aset model yang besar

Golang dan data besar: padanan sempurna atau bertentangan? Dengan perkembangan pesat teknologi data besar, semakin banyak syarikat mula mengoptimumkan perniagaan dan membuat keputusan melalui analisis data. Untuk pemprosesan data besar, bahasa pengaturcaraan yang cekap adalah penting. Di antara banyak bahasa pengaturcaraan, Golang (bahasa Go) telah menjadi salah satu pilihan popular untuk pemprosesan data besar kerana keselarasannya, kecekapan, kesederhanaan dan ciri-ciri lain. Jadi, adakah Golang dan data besar padanan sempurna atau bercanggah? Artikel ini akan bermula daripada aplikasi Golang dalam pemprosesan data besar,