Rumah php教程 php手册 PHP入门基础之引用文件学习笔记

PHP入门基础之引用文件学习笔记

May 25, 2016 pm 04:48 PM
bermula Pangkalan sebut harga

引用文件在php中与asp中引用文件有一定区别,下面我来介绍在php中利用require 与include引用文件实例吧。

引用文件是PHP在一大特特色之一,这个方法可以将常用的功能与函数放在一个文件之中,而其他页面需要用到这些功能或函数时,就直接通过引用这个文件来调用这些函数了,如果不引用的话,重新在那个页面上写上相同的函数会大大的加重开发者的工作量,也加大了程序的代码量,不利于后期的维护以及二次开发。

PHP引用文件的方法有两个,分别利用到的函数是 require() 和 include(),两种引用的效果是一样的,但这两个函数有不同之处:如果 require 引用文件时不反回任何值,出错就致命的错误,程序将终止继续执行;使用该函数进行引用时,你要确保代码都是正确的情况下使用,而当 include 引用文件时有反回值,出错时它仍继续执行后面代码,所以建议大家尽量使用第一个函数 require 来引用文件,它没有值反回,速度和效率上相对比 include 要快,而通常 require 会放在PHP程序的最前面,PHP 程序在执行前,就会先读入 require 所指定引入的文件,使它变成 PHP 程序网页的一部份,常用的函数,亦可以这个方法将它引入网页中。

实例代码如下:

1

2

3

4

5

<?php 

    require(&#39;sql.php&#39;); // 该函数通常放在开头,例如:引用SQL数据库连接函数的文件 

    echo &#39;引用文件示范&#39;; 

    include(&#39;hello-world.php&#39;); // 该函数一般是放在流程控制的处理部分中 

?>

Salin selepas log masuk

这时有人可能就会问,当某个页面引用多个文件时,而这些被引用的文件也都引用了其它一个或多个相同的文件,有时侯没必要引用那么多次,那么怎样才让PHP只引用一次就行了呢?当然,PHP也有对应的方法的,就是在原函数的基础上加上个“后缀”一样的声明,就是把函数分别变为 require_once()和 include_once(),如下示例:

1

2

3

4

5

<?php 

    require_once(&#39;sql.php&#39;); // 声明只引用sql.php文件一次 

    echo &#39;引用文件示范&#39;; 

    include_once(&#39;hello-world.php&#39;); //声明只引用hello-world.php文件一次 

?>

Salin selepas log masuk

               
               

本文地址:

转载随意,但请附上文章地址:-)

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Tutorial Model Penyebaran Bernilai Masa Anda, dari Universiti Purdue Tutorial Model Penyebaran Bernilai Masa Anda, dari Universiti Purdue Apr 07, 2024 am 09:01 AM

Penyebaran bukan sahaja boleh meniru lebih baik, tetapi juga "mencipta". Model resapan (DiffusionModel) ialah model penjanaan imej. Berbanding dengan algoritma yang terkenal seperti GAN dan VAE dalam bidang AI, model resapan mengambil pendekatan yang berbeza. Idea utamanya ialah proses menambah hingar pada imej dan kemudian secara beransur-ansur menolaknya. Cara mengecilkan dan memulihkan imej asal adalah bahagian teras algoritma. Algoritma akhir mampu menghasilkan imej daripada imej bising rawak. Dalam beberapa tahun kebelakangan ini, pertumbuhan luar biasa AI generatif telah membolehkan banyak aplikasi menarik dalam penjanaan teks ke imej, penjanaan video dan banyak lagi. Prinsip asas di sebalik alat generatif ini ialah konsep resapan, mekanisme pensampelan khas yang mengatasi batasan kaedah sebelumnya.

Hasilkan PPT dengan satu klik! Kimi: Biarlah 'pekerja migran PPT' menjadi popular dahulu Hasilkan PPT dengan satu klik! Kimi: Biarlah 'pekerja migran PPT' menjadi popular dahulu Aug 01, 2024 pm 03:28 PM

Kimi: Hanya dalam satu ayat, dalam sepuluh saat sahaja, PPT akan siap. PPT sangat menjengkelkan! Untuk mengadakan mesyuarat, anda perlu mempunyai PPT; untuk menulis laporan mingguan, anda perlu mempunyai PPT untuk membuat pelaburan, anda perlu menunjukkan PPT walaupun anda menuduh seseorang menipu, anda perlu menghantar PPT. Kolej lebih seperti belajar jurusan PPT Anda menonton PPT di dalam kelas dan melakukan PPT selepas kelas. Mungkin, apabila Dennis Austin mencipta PPT 37 tahun lalu, dia tidak menyangka satu hari nanti PPT akan berleluasa. Bercakap tentang pengalaman sukar kami membuat PPT membuatkan kami menitiskan air mata. "Ia mengambil masa tiga bulan untuk membuat PPT lebih daripada 20 muka surat, dan saya menyemaknya berpuluh-puluh kali. Saya rasa ingin muntah apabila saya melihat PPT itu." ialah PPT." Jika anda mengadakan mesyuarat dadakan, anda harus melakukannya

Semua anugerah CVPR 2024 diumumkan! Hampir 10,000 orang menghadiri persidangan itu di luar talian dan seorang penyelidik Cina dari Google memenangi anugerah kertas terbaik Semua anugerah CVPR 2024 diumumkan! Hampir 10,000 orang menghadiri persidangan itu di luar talian dan seorang penyelidik Cina dari Google memenangi anugerah kertas terbaik Jun 20, 2024 pm 05:43 PM

Pada awal pagi 20 Jun, waktu Beijing, CVPR2024, persidangan penglihatan komputer antarabangsa teratas yang diadakan di Seattle, secara rasmi mengumumkan kertas kerja terbaik dan anugerah lain. Pada tahun ini, sebanyak 10 kertas memenangi anugerah, termasuk 2 kertas terbaik dan 2 kertas pelajar terbaik Selain itu, terdapat 2 pencalonan kertas terbaik dan 4 pencalonan kertas pelajar terbaik. Persidangan teratas dalam bidang visi komputer (CV) ialah CVPR, yang menarik sejumlah besar institusi penyelidikan dan universiti setiap tahun. Mengikut statistik, sebanyak 11,532 kertas telah diserahkan tahun ini, 2,719 daripadanya diterima, dengan kadar penerimaan 23.6%. Menurut analisis statistik data CVPR2024 Institut Teknologi Georgia, dari perspektif topik penyelidikan, bilangan kertas terbesar ialah sintesis dan penjanaan imej dan video (Imageandvideosyn

Daripada logam kosong kepada model besar dengan 70 bilion parameter, berikut ialah tutorial dan skrip sedia untuk digunakan Daripada logam kosong kepada model besar dengan 70 bilion parameter, berikut ialah tutorial dan skrip sedia untuk digunakan Jul 24, 2024 pm 08:13 PM

Kami tahu bahawa LLM dilatih pada kelompok komputer berskala besar menggunakan data besar-besaran Tapak ini telah memperkenalkan banyak kaedah dan teknologi yang digunakan untuk membantu dan menambah baik proses latihan LLM. Hari ini, perkara yang ingin kami kongsikan ialah artikel yang mendalami teknologi asas dan memperkenalkan cara menukar sekumpulan "logam kosong" tanpa sistem pengendalian pun menjadi gugusan komputer untuk latihan LLM. Artikel ini datang daripada Imbue, sebuah permulaan AI yang berusaha untuk mencapai kecerdasan am dengan memahami cara mesin berfikir. Sudah tentu, mengubah sekumpulan "logam kosong" tanpa sistem pengendalian menjadi gugusan komputer untuk latihan LLM bukanlah proses yang mudah, penuh dengan penerokaan dan percubaan dan kesilapan, tetapi Imbue akhirnya berjaya melatih LLM dengan 70 bilion parameter proses terkumpul

Lima perisian pengaturcaraan untuk memulakan pembelajaran bahasa C Lima perisian pengaturcaraan untuk memulakan pembelajaran bahasa C Feb 19, 2024 pm 04:51 PM

Sebagai bahasa pengaturcaraan yang digunakan secara meluas, bahasa C merupakan salah satu bahasa asas yang mesti dipelajari bagi mereka yang ingin melibatkan diri dalam pengaturcaraan komputer. Walau bagaimanapun, bagi pemula, mempelajari bahasa pengaturcaraan baharu boleh menjadi sukar, terutamanya disebabkan kekurangan alat pembelajaran dan bahan pengajaran yang berkaitan. Dalam artikel ini, saya akan memperkenalkan lima perisian pengaturcaraan untuk membantu pemula memulakan bahasa C dan membantu anda bermula dengan cepat. Perisian pengaturcaraan pertama ialah Code::Blocks. Code::Blocks ialah persekitaran pembangunan bersepadu sumber terbuka (IDE) percuma untuk

AI sedang digunakan |. AI mencipta vlog kehidupan seorang gadis yang tinggal bersendirian, yang menerima berpuluh ribu suka dalam masa 3 hari AI sedang digunakan |. AI mencipta vlog kehidupan seorang gadis yang tinggal bersendirian, yang menerima berpuluh ribu suka dalam masa 3 hari Aug 07, 2024 pm 10:53 PM

Editor Laporan Kuasa Mesin: Yang Wen Gelombang kecerdasan buatan yang diwakili oleh model besar dan AIGC telah mengubah cara kita hidup dan bekerja secara senyap-senyap, tetapi kebanyakan orang masih tidak tahu cara menggunakannya. Oleh itu, kami telah melancarkan lajur "AI dalam Penggunaan" untuk memperkenalkan secara terperinci cara menggunakan AI melalui kes penggunaan kecerdasan buatan yang intuitif, menarik dan padat serta merangsang pemikiran semua orang. Kami juga mengalu-alukan pembaca untuk menyerahkan kes penggunaan yang inovatif dan praktikal. Pautan video: https://mp.weixin.qq.com/s/2hX_i7li3RqdE4u016yGhQ Baru-baru ini, vlog kehidupan seorang gadis yang tinggal bersendirian menjadi popular di Xiaohongshu. Animasi gaya ilustrasi, ditambah dengan beberapa perkataan penyembuhan, boleh diambil dengan mudah dalam beberapa hari sahaja.

Mesti dibaca untuk pemula teknikal: Analisis tahap kesukaran bahasa C dan Python Mesti dibaca untuk pemula teknikal: Analisis tahap kesukaran bahasa C dan Python Mar 22, 2024 am 10:21 AM

Tajuk: Wajib dibaca untuk pemula teknikal: Analisis kesukaran bahasa C dan Python, memerlukan contoh kod khusus Dalam era digital hari ini, teknologi pengaturcaraan telah menjadi keupayaan yang semakin penting. Sama ada anda ingin bekerja dalam bidang seperti pembangunan perisian, analisis data, kecerdasan buatan, atau hanya belajar pengaturcaraan kerana minat, memilih bahasa pengaturcaraan yang sesuai ialah langkah pertama. Di antara banyak bahasa pengaturcaraan, bahasa C dan Python adalah dua bahasa pengaturcaraan yang digunakan secara meluas, masing-masing mempunyai ciri tersendiri. Artikel ini akan menganalisis tahap kesukaran bahasa C dan Python

Mengira 12 titik kesakitan RAG, arkitek kanan NVIDIA mengajar penyelesaian Mengira 12 titik kesakitan RAG, arkitek kanan NVIDIA mengajar penyelesaian Jul 11, 2024 pm 01:53 PM

Retrieval-augmented generation (RAG) ialah teknik yang menggunakan perolehan semula untuk meningkatkan model bahasa. Secara khusus, sebelum model bahasa menjana jawapan, ia mendapatkan semula maklumat yang berkaitan daripada pangkalan data dokumen yang luas dan kemudian menggunakan maklumat ini untuk membimbing proses penjanaan. Teknologi ini boleh meningkatkan ketepatan dan perkaitan kandungan dengan banyak, mengurangkan masalah halusinasi dengan berkesan, meningkatkan kelajuan kemas kini pengetahuan, dan meningkatkan kebolehkesanan penjanaan kandungan. RAG sudah pasti salah satu bidang penyelidikan kecerdasan buatan yang paling menarik. Untuk butiran lanjut tentang RAG, sila rujuk artikel lajur di tapak ini "Apakah perkembangan baharu dalam RAG, yang pakar dalam menebus kekurangan model besar?" Ulasan ini menerangkannya dengan jelas." Tetapi RAG tidak sempurna, dan pengguna sering menghadapi beberapa "titik kesakitan" apabila menggunakannya. Baru-baru ini, penyelesaian AI generatif termaju NVIDIA

See all articles