负载均衡常用算法介绍
负载均衡常用算法:
1、轮询 (round-robin)
轮询为负载均衡中较为基础也较为简单的算法,它不需要配置额外参数。假设配置文件中共有 M 台服务器,该算法遍历服务器节点列表,并按节点次序每轮选择一台服务器处理请求。当所有节点均被调用过一次后,该算法将从第一个节点开始重新一轮遍历。
特点:
由于该算法中每个请求按时间顺序逐一分配到不同的服务器处理,因此适用于服务器性能相近的集群情况,其中每个服务器承载相同的负载。但对于服务器性能不同的集群而言,该算法容易引发资源分配不合理等问题。
2、加权轮询
为了避免普通轮询带来的弊端,加权轮询应运而生。在加权轮询中,每个服务器会有各自的 weight。一般情况下,weight 的值越大意味着该服务器的性能越好,可以承载更多的请求。该算法中,客户端的请求按权值比例分配,当一个请求到达时,优先为其分配权值最大的服务器。
特点:
加权轮询可以应用于服务器性能不等的集群中,使资源分配更加合理化。
其核心思想是,遍历各服务器节点,并计算节点权值,计算规则为 current_weight 与其对应的 effective_weight 之和,每轮遍历中选出权值最大的节点作为最优服务器节点。其中 effective_weight 会在算法的执行过程中随资源情况和响应情况而改变。
3、IP 哈希(IP hash)
ip_hash 依据发出请求的客户端 IP 的 hash 值来分配服务器,该算法可以保证同 IP 发出的请求映射到同一服务器,或者具有相同 hash 值的不同 IP 映射到同一服务器。
特点:
该算法在一定程度上解决了集群部署环境下 Session 不共享的问题。
推荐教程:nginx教程
Atas ialah kandungan terperinci 负载均衡常用算法介绍. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Ditulis di atas & pemahaman peribadi penulis: Pada masa ini, dalam keseluruhan sistem pemanduan autonomi, modul persepsi memainkan peranan penting Hanya selepas kenderaan pemanduan autonomi yang memandu di jalan raya memperoleh keputusan persepsi yang tepat melalui modul persepsi boleh Peraturan hiliran dan. modul kawalan dalam sistem pemanduan autonomi membuat pertimbangan dan keputusan tingkah laku yang tepat pada masanya dan betul. Pada masa ini, kereta dengan fungsi pemanduan autonomi biasanya dilengkapi dengan pelbagai penderia maklumat data termasuk penderia kamera pandangan sekeliling, penderia lidar dan penderia radar gelombang milimeter untuk mengumpul maklumat dalam modaliti yang berbeza untuk mencapai tugas persepsi yang tepat. Algoritma persepsi BEV berdasarkan penglihatan tulen digemari oleh industri kerana kos perkakasannya yang rendah dan penggunaan mudah, dan hasil keluarannya boleh digunakan dengan mudah untuk pelbagai tugas hiliran.

Cabaran biasa yang dihadapi oleh algoritma pembelajaran mesin dalam C++ termasuk pengurusan memori, multi-threading, pengoptimuman prestasi dan kebolehselenggaraan. Penyelesaian termasuk menggunakan penunjuk pintar, perpustakaan benang moden, arahan SIMD dan perpustakaan pihak ketiga, serta mengikuti garis panduan gaya pengekodan dan menggunakan alat automasi. Kes praktikal menunjukkan cara menggunakan perpustakaan Eigen untuk melaksanakan algoritma regresi linear, mengurus memori dengan berkesan dan menggunakan operasi matriks berprestasi tinggi.

Lapisan bawah fungsi C++ sort menggunakan isihan gabungan, kerumitannya ialah O(nlogn), dan menyediakan pilihan algoritma pengisihan yang berbeza, termasuk isihan pantas, isihan timbunan dan isihan stabil.

Konvergensi kecerdasan buatan (AI) dan penguatkuasaan undang-undang membuka kemungkinan baharu untuk pencegahan dan pengesanan jenayah. Keupayaan ramalan kecerdasan buatan digunakan secara meluas dalam sistem seperti CrimeGPT (Teknologi Ramalan Jenayah) untuk meramal aktiviti jenayah. Artikel ini meneroka potensi kecerdasan buatan dalam ramalan jenayah, aplikasi semasanya, cabaran yang dihadapinya dan kemungkinan implikasi etika teknologi tersebut. Kecerdasan Buatan dan Ramalan Jenayah: Asas CrimeGPT menggunakan algoritma pembelajaran mesin untuk menganalisis set data yang besar, mengenal pasti corak yang boleh meramalkan di mana dan bila jenayah mungkin berlaku. Set data ini termasuk statistik jenayah sejarah, maklumat demografi, penunjuk ekonomi, corak cuaca dan banyak lagi. Dengan mengenal pasti trend yang mungkin terlepas oleh penganalisis manusia, kecerdasan buatan boleh memperkasakan agensi penguatkuasaan undang-undang

01Garis prospek Pada masa ini, sukar untuk mencapai keseimbangan yang sesuai antara kecekapan pengesanan dan hasil pengesanan. Kami telah membangunkan algoritma YOLOv5 yang dipertingkatkan untuk pengesanan sasaran dalam imej penderiaan jauh optik resolusi tinggi, menggunakan piramid ciri berbilang lapisan, strategi kepala pengesanan berbilang dan modul perhatian hibrid untuk meningkatkan kesan rangkaian pengesanan sasaran dalam imej penderiaan jauh optik. Menurut set data SIMD, peta algoritma baharu adalah 2.2% lebih baik daripada YOLOv5 dan 8.48% lebih baik daripada YOLOX, mencapai keseimbangan yang lebih baik antara hasil pengesanan dan kelajuan. 02 Latar Belakang & Motivasi Dengan perkembangan pesat teknologi penderiaan jauh, imej penderiaan jauh optik resolusi tinggi telah digunakan untuk menggambarkan banyak objek di permukaan bumi, termasuk pesawat, kereta, bangunan, dll. Pengesanan objek dalam tafsiran imej penderiaan jauh

Strategi pengimbangan beban adalah penting dalam rangka kerja Java untuk pengedaran permintaan yang cekap. Bergantung pada situasi konkurensi, strategi berbeza mempunyai prestasi berbeza: Kaedah pengundian: prestasi stabil di bawah konkurensi rendah. Kaedah undian berwajaran: Prestasi adalah serupa dengan kaedah pengundian di bawah konkurensi rendah. Bilangan kaedah sambungan paling sedikit: prestasi terbaik di bawah keselarasan tinggi. Kaedah rawak: mudah tetapi prestasi lemah. Hashing Konsisten: Mengimbangi beban pelayan. Digabungkan dengan kes praktikal, artikel ini menerangkan cara memilih strategi yang sesuai berdasarkan data prestasi untuk meningkatkan prestasi aplikasi dengan ketara.

1. Latar Belakang Pembinaan 58 Portrait Platform Pertama sekali, saya ingin berkongsi dengan anda latar belakang pembinaan 58 Portrait Platform. 1. Pemikiran tradisional platform pemprofilan tradisional tidak lagi mencukupi Membina platform pemprofilan pengguna bergantung pada keupayaan pemodelan gudang data untuk menyepadukan data daripada pelbagai barisan perniagaan untuk membina potret pengguna yang tepat untuk memahami tingkah laku, minat pengguna dan keperluan, dan menyediakan keupayaan sampingan, akhirnya, ia juga perlu mempunyai keupayaan platform data untuk menyimpan, bertanya dan berkongsi data profil pengguna dan menyediakan perkhidmatan profil dengan cekap. Perbezaan utama antara platform pemprofilan perniagaan binaan sendiri dan platform pemprofilan pejabat pertengahan ialah platform pemprofilan binaan sendiri menyediakan satu barisan perniagaan dan boleh disesuaikan atas permintaan platform pertengahan pejabat berkhidmat berbilang barisan perniagaan, mempunyai kompleks pemodelan, dan menyediakan lebih banyak keupayaan umum. 2.58 Potret pengguna latar belakang pembinaan potret di platform tengah 58

Ditulis di atas & Pemahaman peribadi penulis ialah dalam sistem pemanduan autonomi, tugas persepsi adalah komponen penting dalam keseluruhan sistem pemanduan autonomi. Matlamat utama tugas persepsi adalah untuk membolehkan kenderaan autonomi memahami dan melihat elemen persekitaran sekeliling, seperti kenderaan yang memandu di jalan raya, pejalan kaki di tepi jalan, halangan yang dihadapi semasa memandu, tanda lalu lintas di jalan raya, dan sebagainya, dengan itu membantu hiliran. modul Membuat keputusan dan tindakan yang betul dan munasabah. Kenderaan dengan keupayaan pemanduan autonomi biasanya dilengkapi dengan pelbagai jenis penderia pengumpulan maklumat, seperti penderia kamera pandangan sekeliling, penderia lidar, penderia radar gelombang milimeter, dsb., untuk memastikan kenderaan autonomi itu dapat melihat dan memahami persekitaran sekeliling dengan tepat. elemen , membolehkan kenderaan autonomi membuat keputusan yang betul semasa pemanduan autonomi. kepala
