简述大数据的四个特征
大数据的四个特征:1、数据体量巨大;2、数据类型繁多;3、价值密度低;4、处理速度快。
大数据的四个特征:
一是数据体量巨大(Volume)。
截至目前,人类生产的所有印刷材料的数据量是200PB(1PB=210TB),而历史上全人类说过的所有的话的数据量大约是5EB(1EB=210PB)。当前,典型个人计算机硬盘的容量为TB量级,而一些大企业的数据量已经接近EB量级。
二是数据类型繁多(Variety)。
这种类型的多样性也让数据被分为结构化数据和非结构化数据。相对于以往便于存储的以文本为主的结构化数据,非结构化数据越来越多,包括网络日志、音频、视频、图片、地理位置信息等,这些多类型的数据对数据的处理能力提出了更高要求。
三是价值密度低(Value)。
价值密度的高低与数据总量的大小成反比。以视频为例,一部1小时的视频,在连续不间断的监控中,有用数据可能仅有一二秒。如何通过强大的机器算法更迅速地完成数据的价值“提纯”成为目前大数据背景下亟待解决的难题。
四是处理速度快(Velocity)。
这是大数据区分于传统数据挖掘的最显著特征。根据IDC的“数字宇宙”的报告,预计到2020年,全球数据使用量将达到35.2ZB。在如此海量的数据面前,处理数据的效率就是企业的生命。
相关学习推荐:网站建设教程
Atas ialah kandungan terperinci 简述大数据的四个特征. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Kemahiran pemprosesan struktur data besar: Pecahan: Pecahkan set data dan proseskannya dalam bahagian untuk mengurangkan penggunaan memori. Penjana: Hasilkan item data satu demi satu tanpa memuatkan keseluruhan set data, sesuai untuk set data tanpa had. Penstriman: Baca fail atau hasil pertanyaan baris demi baris, sesuai untuk fail besar atau data jauh. Storan luaran: Untuk set data yang sangat besar, simpan data dalam pangkalan data atau NoSQL.

Dalam era Internet, data besar telah menjadi sumber baharu Dengan peningkatan berterusan teknologi analisis data besar, permintaan untuk pengaturcaraan data besar menjadi semakin mendesak. Sebagai bahasa pengaturcaraan yang digunakan secara meluas, kelebihan unik C++ dalam pengaturcaraan data besar telah menjadi semakin menonjol. Di bawah ini saya akan berkongsi pengalaman praktikal saya dalam pengaturcaraan data besar C++. 1. Memilih struktur data yang sesuai Memilih struktur data yang sesuai adalah bahagian penting dalam menulis program data besar yang cekap. Terdapat pelbagai struktur data dalam C++ yang boleh kita gunakan, seperti tatasusunan, senarai terpaut, pepohon, jadual cincang, dsb.

AEC/O (Seni Bina, Kejuruteraan & Pembinaan/Operasi) merujuk kepada perkhidmatan komprehensif yang menyediakan reka bentuk seni bina, reka bentuk kejuruteraan, pembinaan dan operasi dalam industri pembinaan. Pada tahun 2024, industri AEC/O menghadapi cabaran yang berubah-ubah di tengah-tengah kemajuan teknologi. Tahun ini dijangka menyaksikan integrasi teknologi termaju, menandakan anjakan paradigma dalam reka bentuk, pembinaan dan operasi. Sebagai tindak balas kepada perubahan ini, industri mentakrifkan semula proses kerja, melaraskan keutamaan, dan meningkatkan kerjasama untuk menyesuaikan diri dengan keperluan dunia yang berubah dengan pantas. Lima arah aliran utama berikut dalam industri AEC/O akan menjadi tema utama pada 2024, mengesyorkan ia bergerak ke arah masa depan yang lebih bersepadu, responsif dan mampan: rantaian bekalan bersepadu, pembuatan pintar

1. Latar Belakang Pembinaan 58 Portrait Platform Pertama sekali, saya ingin berkongsi dengan anda latar belakang pembinaan 58 Portrait Platform. 1. Pemikiran tradisional platform pemprofilan tradisional tidak lagi mencukupi Membina platform pemprofilan pengguna bergantung pada keupayaan pemodelan gudang data untuk menyepadukan data daripada pelbagai barisan perniagaan untuk membina potret pengguna yang tepat untuk memahami tingkah laku, minat pengguna dan keperluan, dan menyediakan keupayaan sampingan, akhirnya, ia juga perlu mempunyai keupayaan platform data untuk menyimpan, bertanya dan berkongsi data profil pengguna dan menyediakan perkhidmatan profil dengan cekap. Perbezaan utama antara platform pemprofilan perniagaan binaan sendiri dan platform pemprofilan pejabat pertengahan ialah platform pemprofilan binaan sendiri menyediakan satu barisan perniagaan dan boleh disesuaikan atas permintaan platform pertengahan pejabat berkhidmat berbilang barisan perniagaan, mempunyai kompleks pemodelan, dan menyediakan lebih banyak keupayaan umum. 2.58 Potret pengguna latar belakang pembinaan potret di platform tengah 58

Dalam era data besar hari ini, pemprosesan dan analisis data telah menjadi sokongan penting untuk pembangunan pelbagai industri. Sebagai bahasa pengaturcaraan dengan kecekapan pembangunan tinggi dan prestasi unggul, bahasa Go telah secara beransur-ansur menarik perhatian dalam bidang data besar. Walau bagaimanapun, berbanding dengan bahasa lain seperti Java dan Python, bahasa Go mempunyai sokongan yang agak tidak mencukupi untuk rangka kerja data besar, yang telah menyebabkan masalah bagi sesetengah pembangun. Artikel ini akan meneroka sebab utama kekurangan rangka kerja data besar dalam bahasa Go, mencadangkan penyelesaian yang sepadan dan menggambarkannya dengan contoh kod khusus. 1. Pergi bahasa

Pelancaran produk musim luruh 2023 Yizhiwei telah berakhir dengan jayanya! Marilah kita sama-sama meninjau sorotan persidangan itu! 1. Keterbukaan inklusif pintar menjadikan kembar digital produktif Ning Haiyuan, pengasas bersama Kangaroo Cloud dan Ketua Pegawai Eksekutif Yizhiwei, membuat ucapan pembukaan: Pada mesyuarat strategik syarikat tahun ini, kami meletakkan hala tuju utama penyelidikan dan pembangunan produk sebagai “inklusif pintar. keterbukaan” "Tiga keupayaan teras, memfokuskan pada tiga kata kunci teras "keterbukaan inklusif pintar", kami seterusnya mencadangkan matlamat pembangunan "menjadikan kembar digital sebagai kuasa yang produktif". 2. EasyTwin: Teroka enjin kembar digital baharu yang lebih mudah digunakan 1. Dari 0.1 hingga 1.0, teruskan meneroka enjin pemaparan gabungan kembar digital untuk mendapatkan penyelesaian yang lebih baik dengan mod penyuntingan 3D yang matang, pelan tindakan interaktif yang mudah dan aset model yang besar

Sebagai bahasa pengaturcaraan sumber terbuka, bahasa Go secara beransur-ansur mendapat perhatian dan penggunaan yang meluas dalam beberapa tahun kebelakangan ini. Ia digemari oleh pengaturcara kerana kesederhanaan, kecekapan, dan keupayaan pemprosesan serentak yang berkuasa. Dalam bidang pemprosesan data besar, bahasa Go juga mempunyai potensi yang kuat Ia boleh digunakan untuk memproses data besar-besaran, mengoptimumkan prestasi, dan boleh disepadukan dengan baik dengan pelbagai alatan dan rangka kerja pemprosesan data besar. Dalam artikel ini, kami akan memperkenalkan beberapa konsep asas dan teknik pemprosesan data besar dalam bahasa Go dan menunjukkan cara menggunakan bahasa Go melalui contoh kod tertentu.

Dalam pemprosesan data besar, menggunakan pangkalan data dalam memori (seperti Aerospike) boleh meningkatkan prestasi aplikasi C++ kerana ia menyimpan data dalam memori komputer, menghapuskan kesesakan I/O cakera dan meningkatkan kelajuan akses data dengan ketara. Kes praktikal menunjukkan bahawa kelajuan pertanyaan menggunakan pangkalan data dalam memori adalah beberapa urutan magnitud lebih cepat daripada menggunakan pangkalan data cakera keras.