python如何验证中心极限定理
python验证中心极限定理的方法:首先模拟随机掷色子1000次观察一下平均值;然后模拟抛十次,并画图看看他们的分布情况;最后模拟1000组,每组抛50次,并取每一组的平均值看分布情况。
python验证中心极限定理的方法:
中心极限定理:
从一个给定的服从任意分布的总体当中,每次抽n个样本,一共抽取m次。然后再对这m各组的值求平均值,各组的平均值会服从近似正态分布。
- 首先模拟随机掷色子1000次观察一下平均值。
import numpy as np a = np.random.randint(1,7,1000)print(a)a.mean()
输出结果:
可以看到,掷1000次之后取平均值(注意:这个平均值每次策都有微小的不一样,因为是随机抽取的)接近于3.5(3.5=1/6*(1+2+3+4+5+6))。
然后,再次模拟抛10000次,取平均值
可以看到,结果越来越接近于3.5
- 接着模拟抛十次,然后画图看看他们的分布情况
sample = []for i in range(10): sample.append(a[int(np.random.random()*len(a))]) #从a里面随机抽plt.figure(figsize=(20,10),dpi=100)plt.bar(sample,range(len(sample)))plt.show()
可见分布不是非常的均匀。
- 接着模拟1000组,每组抛50次,然后取每一组的平均值看分布情况。
sample_mean=[]sample_std=[]samples=[]for i in range(1000): sample=[] #每组一个列表 for j in range(60): sample.append(a[int(np.random.random()*len(a))])#模拟抛50次 sample = np.array(sample) #转化为array数组,便于处理 sample_mean.append(sample.mean()) sample_std.append(sample.std()) samples.append(sample)sample_mean_np = np.array(sample_mean)sample_std_np = np.array(sample_std)print(sample_mean_np)
plt.figure(figsize=(20,10),dpi=80)d =0.1 num_bins = (max(sample_mean_np)-min(sample_mean_np))//d plt.hist(sample_mean_np,num_bins) #绘制频率分布图
可以看到,每组的平均值是服从正态分布的。
相关免费学习推荐:python视频教程
Atas ialah kandungan terperinci python如何验证中心极限定理. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Untuk fail XML kecil, anda boleh menggantikan kandungan anotasi secara langsung dengan editor teks; Untuk fail besar, adalah disyorkan untuk menggunakan parser XML untuk mengubahnya untuk memastikan kecekapan dan ketepatan. Berhati -hati apabila memadam komen XML, menyimpan komen biasanya membantu pemahaman dan penyelenggaraan kod. Petua Lanjutan menyediakan kod sampel Python untuk mengubahsuai komen menggunakan parser XML, tetapi pelaksanaan khusus perlu diselaraskan mengikut perpustakaan XML yang digunakan. Beri perhatian kepada isu pengekodan semasa mengubah suai fail XML. Adalah disyorkan untuk menggunakan pengekodan UTF-8 dan menentukan format pengekodan.

Mengubah kandungan XML memerlukan pengaturcaraan, kerana ia memerlukan penemuan tepat nod sasaran untuk menambah, memadam, mengubah suai dan menyemak. Bahasa pengaturcaraan mempunyai perpustakaan yang sepadan untuk memproses XML dan menyediakan API untuk melaksanakan operasi yang selamat, cekap dan terkawal seperti pangkalan data operasi.

Kelajuan XML mudah alih ke PDF bergantung kepada faktor -faktor berikut: kerumitan struktur XML. Kaedah Penukaran Konfigurasi Perkakasan Mudah Alih (Perpustakaan, Algoritma) Kaedah Pengoptimuman Kualiti Kod (Pilih perpustakaan yang cekap, mengoptimumkan algoritma, data cache, dan menggunakan pelbagai threading). Secara keseluruhannya, tidak ada jawapan mutlak dan ia perlu dioptimumkan mengikut keadaan tertentu.

Permohonan yang menukarkan XML terus ke PDF tidak dapat dijumpai kerana mereka adalah dua format yang berbeza. XML digunakan untuk menyimpan data, manakala PDF digunakan untuk memaparkan dokumen. Untuk melengkapkan transformasi, anda boleh menggunakan bahasa pengaturcaraan dan perpustakaan seperti Python dan ReportLab untuk menghuraikan data XML dan menghasilkan dokumen PDF.

Gunakan kebanyakan editor teks untuk membuka fail XML; Jika anda memerlukan paparan pokok yang lebih intuitif, anda boleh menggunakan editor XML, seperti editor XML oksigen atau XMLSPY; Jika anda memproses data XML dalam program, anda perlu menggunakan bahasa pengaturcaraan (seperti Python) dan perpustakaan XML (seperti XML.Etree.ElementTree) untuk menghuraikan.

Isu Menentukan Penghitungan Tetap String Dalam Protobuf Apabila menggunakan Protobuf, anda sering menghadapi situasi di mana anda perlu mengaitkan jenis enum dengan pemalar rentetan ...

Untuk menukar imej XML, anda perlu menentukan struktur data XML terlebih dahulu, kemudian pilih perpustakaan grafik yang sesuai (seperti matplotlib Python) dan kaedah, pilih strategi visualisasi berdasarkan struktur data, pertimbangkan volum data dan format imej, lakukan pemprosesan batch atau gunakan perpustakaan yang cekap, dan akhirnya simpan sebagai PNG, JPEG, atau SVG mengikut keperluan.

Tukar XML ke PDF dengan kualiti tinggi pada telefon bimbit anda memerlukan: Parsing XML di awan dan menjana PDF menggunakan platform pengkomputeran tanpa pelayan. Pilih Parser XML yang cekap dan perpustakaan penjanaan PDF. Mengendalikan kesilapan dengan betul. Menggunakan sepenuhnya kuasa pengkomputeran awan untuk mengelakkan tugas berat pada telefon anda. Laraskan kerumitan mengikut keperluan, termasuk memproses struktur XML kompleks, menghasilkan PDF multi-halaman, dan menambah imej. Cetak maklumat log untuk membantu debug. Mengoptimumkan prestasi, pilih parser yang cekap dan perpustakaan PDF, dan boleh menggunakan pengaturcaraan asynchronous atau data XML preprocessing. Memastikan kualiti kod yang baik dan penyelenggaraan.
