大数据的特征是什么?
大数据的特征:1、容量;数据的大小决定所考虑的数据的价值和潜在的信息。2、种类;数据类型的多样性。3、速度;获得数据的速度。4、可变性;妨碍了处理和有效地管理数据的过程。5、真实性;数据的质量。6、复杂性;数据量巨大,来源多渠道。7、价值;合理运用大数据,以低成本创造高价值。
本教程操作环境:windows7系统、Dell G3电脑。
大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(容量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
大数据的特征
容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息;
种类(Variety):数据类型的多样性;
速度(Velocity):指获得数据的速度;
可变性(Variability):妨碍了处理和有效地管理数据的过程。
真实性(Veracity):数据的质量。
复杂性(Complexity):数据量巨大,来源多渠道。
价值(value):合理运用大数据,以低成本创造高价值。
大数据的价值体现在以下几个方面:
(1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;
(2)做小而美模式的中小微企业可以利用大数据做服务转型;
(3)面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。
不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。”这确实是需要警惕的。
在这个快速发展的智能硬件时代,困扰应用开发者的一个重要问题就是如何在功率、覆盖范围、传输速率和成本之间找到那个微妙的平衡点。企业组织利用相关数据和分析可以帮助它们降低成本、提高效率、开发新产品、做出更明智的业务决策等等。例如,通过结合大数据和高性能的分析,下面这些对企业有益的情况都可能会发生:
(1)及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。
(2)为成千上万的快递车辆规划实时交通路线,躲避拥堵。
(3)分析所有SKU,以利润最大化为目标来定价和清理库存。
(4)根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。
(5)从大量客户中快速识别出金牌客户。
(6)使用点击流分析和数据挖掘来规避欺诈行为。
相关推荐:《编程课程》
Atas ialah kandungan terperinci 大数据的特征是什么?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Kemahiran pemprosesan struktur data besar: Pecahan: Pecahkan set data dan proseskannya dalam bahagian untuk mengurangkan penggunaan memori. Penjana: Hasilkan item data satu demi satu tanpa memuatkan keseluruhan set data, sesuai untuk set data tanpa had. Penstriman: Baca fail atau hasil pertanyaan baris demi baris, sesuai untuk fail besar atau data jauh. Storan luaran: Untuk set data yang sangat besar, simpan data dalam pangkalan data atau NoSQL.

Dalam era Internet, data besar telah menjadi sumber baharu Dengan peningkatan berterusan teknologi analisis data besar, permintaan untuk pengaturcaraan data besar menjadi semakin mendesak. Sebagai bahasa pengaturcaraan yang digunakan secara meluas, kelebihan unik C++ dalam pengaturcaraan data besar telah menjadi semakin menonjol. Di bawah ini saya akan berkongsi pengalaman praktikal saya dalam pengaturcaraan data besar C++. 1. Memilih struktur data yang sesuai Memilih struktur data yang sesuai adalah bahagian penting dalam menulis program data besar yang cekap. Terdapat pelbagai struktur data dalam C++ yang boleh kita gunakan, seperti tatasusunan, senarai terpaut, pepohon, jadual cincang, dsb.

AEC/O (Seni Bina, Kejuruteraan & Pembinaan/Operasi) merujuk kepada perkhidmatan komprehensif yang menyediakan reka bentuk seni bina, reka bentuk kejuruteraan, pembinaan dan operasi dalam industri pembinaan. Pada tahun 2024, industri AEC/O menghadapi cabaran yang berubah-ubah di tengah-tengah kemajuan teknologi. Tahun ini dijangka menyaksikan integrasi teknologi termaju, menandakan anjakan paradigma dalam reka bentuk, pembinaan dan operasi. Sebagai tindak balas kepada perubahan ini, industri mentakrifkan semula proses kerja, melaraskan keutamaan, dan meningkatkan kerjasama untuk menyesuaikan diri dengan keperluan dunia yang berubah dengan pantas. Lima arah aliran utama berikut dalam industri AEC/O akan menjadi tema utama pada 2024, mengesyorkan ia bergerak ke arah masa depan yang lebih bersepadu, responsif dan mampan: rantaian bekalan bersepadu, pembuatan pintar

1. Latar Belakang Pembinaan 58 Portrait Platform Pertama sekali, saya ingin berkongsi dengan anda latar belakang pembinaan 58 Portrait Platform. 1. Pemikiran tradisional platform pemprofilan tradisional tidak lagi mencukupi Membina platform pemprofilan pengguna bergantung pada keupayaan pemodelan gudang data untuk menyepadukan data daripada pelbagai barisan perniagaan untuk membina potret pengguna yang tepat untuk memahami tingkah laku, minat pengguna dan keperluan, dan menyediakan keupayaan sampingan, akhirnya, ia juga perlu mempunyai keupayaan platform data untuk menyimpan, bertanya dan berkongsi data profil pengguna dan menyediakan perkhidmatan profil dengan cekap. Perbezaan utama antara platform pemprofilan perniagaan binaan sendiri dan platform pemprofilan pejabat pertengahan ialah platform pemprofilan binaan sendiri menyediakan satu barisan perniagaan dan boleh disesuaikan atas permintaan platform pertengahan pejabat berkhidmat berbilang barisan perniagaan, mempunyai kompleks pemodelan, dan menyediakan lebih banyak keupayaan umum. 2.58 Potret pengguna latar belakang pembinaan potret di platform tengah 58

Dalam era data besar hari ini, pemprosesan dan analisis data telah menjadi sokongan penting untuk pembangunan pelbagai industri. Sebagai bahasa pengaturcaraan dengan kecekapan pembangunan tinggi dan prestasi unggul, bahasa Go telah secara beransur-ansur menarik perhatian dalam bidang data besar. Walau bagaimanapun, berbanding dengan bahasa lain seperti Java dan Python, bahasa Go mempunyai sokongan yang agak tidak mencukupi untuk rangka kerja data besar, yang telah menyebabkan masalah bagi sesetengah pembangun. Artikel ini akan meneroka sebab utama kekurangan rangka kerja data besar dalam bahasa Go, mencadangkan penyelesaian yang sepadan dan menggambarkannya dengan contoh kod khusus. 1. Pergi bahasa

Pelancaran produk musim luruh 2023 Yizhiwei telah berakhir dengan jayanya! Marilah kita sama-sama meninjau sorotan persidangan itu! 1. Keterbukaan inklusif pintar menjadikan kembar digital produktif Ning Haiyuan, pengasas bersama Kangaroo Cloud dan Ketua Pegawai Eksekutif Yizhiwei, membuat ucapan pembukaan: Pada mesyuarat strategik syarikat tahun ini, kami meletakkan hala tuju utama penyelidikan dan pembangunan produk sebagai “inklusif pintar. keterbukaan” "Tiga keupayaan teras, memfokuskan pada tiga kata kunci teras "keterbukaan inklusif pintar", kami seterusnya mencadangkan matlamat pembangunan "menjadikan kembar digital sebagai kuasa yang produktif". 2. EasyTwin: Teroka enjin kembar digital baharu yang lebih mudah digunakan 1. Dari 0.1 hingga 1.0, teruskan meneroka enjin pemaparan gabungan kembar digital untuk mendapatkan penyelesaian yang lebih baik dengan mod penyuntingan 3D yang matang, pelan tindakan interaktif yang mudah dan aset model yang besar

Sebagai bahasa pengaturcaraan sumber terbuka, bahasa Go secara beransur-ansur mendapat perhatian dan penggunaan yang meluas dalam beberapa tahun kebelakangan ini. Ia digemari oleh pengaturcara kerana kesederhanaan, kecekapan, dan keupayaan pemprosesan serentak yang berkuasa. Dalam bidang pemprosesan data besar, bahasa Go juga mempunyai potensi yang kuat Ia boleh digunakan untuk memproses data besar-besaran, mengoptimumkan prestasi, dan boleh disepadukan dengan baik dengan pelbagai alatan dan rangka kerja pemprosesan data besar. Dalam artikel ini, kami akan memperkenalkan beberapa konsep asas dan teknik pemprosesan data besar dalam bahasa Go dan menunjukkan cara menggunakan bahasa Go melalui contoh kod tertentu.

Dalam pemprosesan data besar, menggunakan pangkalan data dalam memori (seperti Aerospike) boleh meningkatkan prestasi aplikasi C++ kerana ia menyimpan data dalam memori komputer, menghapuskan kesesakan I/O cakera dan meningkatkan kelajuan akses data dengan ketara. Kes praktikal menunjukkan bahawa kelajuan pertanyaan menggunakan pangkalan data dalam memori adalah beberapa urutan magnitud lebih cepat daripada menggunakan pangkalan data cakera keras.