Rumah Operasi dan penyelenggaraan Nginx 位运算与nginx性能的联系

位运算与nginx性能的联系

Jan 12, 2021 am 09:53 AM
nginx Operasi bit prestasi

位运算与nginx性能的联系

我们都知道nginx是以高性能出名的,这主要是归功于nginx的源码。本文我们就来讲讲位运算与nginx高性能的联系。

(学习视频分享:编程视频

位运算在 Nginx 的源码是处处可见,从定义指令的类型(可以携带多少参数,可以出现在哪些配置块下),到标记当前请求是否还有未发送完的数据,再到 Nginx 事件模块里用指针的最低位来标记一个事件是否过期,无不体现着位运算的神奇和魅力。

本文会介绍和分析 Nginx 源码里的一些经典的位运算使用,并扩展介绍一些位其他的位运算技巧。

对齐

Nginx 内部在进行内存分配时,非常注意内存起始地址的对齐,即内存对齐(可以换来一些性能上的提升),这与处理器的寻址特性有关,比如某些处理器会按 4 字节宽度寻址,在这样的机器上,假设需要读取从 0x46b1e7 开始的 4 个字节,由于 0x46b1e7 并不处在 4 字节边界上(0x46b1e7 % 4 = 3),所以在进行读的时候,会分两次进行读取,第一次读取 0x46b1e4 开始的 4 个字节,并取出低 3 字节;再读取 0x46b1e8 开始的 4 个字节,取出最高的字节。我们知道读写主存的速度并不能匹配 CPU,那么两次的读取显然带来了更大的开销,这会引起指令停滞,增大 CPI(每指令周期数),损害应用程序的性能。

因此 Nginx 封装了一个宏,专门用以进行对齐操作。

#define ngx_align(d, a)     (((d) + (a - 1)) & ~(a - 1))
Salin selepas log masuk

如上代码所示,该宏使得 d 按 a 对齐,其中 a 必须是 2 的幂次。

比如 d 是 17,a 是 2 时,得到 18;d 是 15,a 是 4 时,得到 16;d 是 16,a 是 4 时,得到 16。

这个宏其实就是在寻找大于等于 d 的,第一个 a 的倍数。由于 a 是 2 的幂次, 因此 a 的二进制表示为 00...1...00 这样的形式,即它只有一个 1,所以 a - 1 便是 00...01...1 这样的格式,那么 ~(a - 1) 就会把低 n 位全部置为 0,其中 n 是 a 低位连续 0 的个数。所以此时如果我们让 d 和 ~(a - 1) 进行一次按位与操作,就能够把 d 的低 n 位清零,由于我们需要寻找大于等于 d 的数,所以用 d + (a - 1) 即可。

位图

位图,通常用以标记事物的状态,“位” 体现在每个事物只使用一个比特位进行标记,这即节约内存,又能提升性能。

Nginx 里有多处使用位图的例子,比如它的共享内存分配器(slab),再比如在对 uri(Uniform Resource Identifier)进行转义时需要判断一个字符是否是一个保留字符(或者不安全字符),这样的字符需要被转义成 %XX 。

static uint32_t   uri_component[] = {
        0xffffffff, /* 1111 1111 1111 1111  1111 1111 1111 1111 */

/* ?>=< ;:98 7654 3210  /.-, +*)( &#39;&%$ #"!  */
        0xfc009fff, /* 1111 1100 0000 0000  1001 1111 1111 1111 */

/* _^]\ [ZYX WVUT SRQP  ONML KJIH GFED CBA@ */
        0x78000001, /* 0111 1000 0000 0000  0000 0000 0000 0001 */

/*  ~}| {zyx wvut srqp  onml kjih gfed cba` */
        0xb8000001, /* 1011 1000 0000 0000  0000 0000 0000 0001 */

        0xffffffff, /* 1111 1111 1111 1111  1111 1111 1111 1111 */
        0xffffffff, /* 1111 1111 1111 1111  1111 1111 1111 1111 */
        0xffffffff, /* 1111 1111 1111 1111  1111 1111 1111 1111 */
        0xffffffff  /* 1111 1111 1111 1111  1111 1111 1111 1111 */
    };
Salin selepas log masuk

如上所示,一个简单的数组组成了一个位图,共包含 8 个数字,每个数字表示 32 个状态,因此这个位图把 256 个字符(包括了扩展 ASCII 码)。为 0 的位表示一个通常的字符,即不需要转义,为 1 的位代表的就需要进行转义。

那么这个位图该如何使用?Nginx 在遍历 uri 的时候,通过一条简单的语句来进行判断。

uri_component[ch >> 5] & (1U << (ch & 0x1f))
Salin selepas log masuk

如上所示,ch 表示当前字符,ch >> 5 是对 ch 右移 5 位,这起到一个除以 32 的效果,这一步操作确定了 ch 在 uri_component 的第几个数字上;而右边的,(ch & 0x1f) 则是取出了 ch 低 5 位的值,相当于取模 32,这个值即表示 ch 在对应数字的第几个位(从低到高计算);因此左右两边的值进行一次按位与操作后,就把 ch 字符所在的位图状态取出来了。比如 ch 是 '0'(即数字 48),它存在于位图的第 2 个数字上(48 >> 5 = 1),又在这个数字(0xfc009fff)的第 16 位上,所以它的状态就是 0xfc009fff & 0x10000 = 0,所以 '0'是一个通用的字符,不用对它转义。

从上面这个例子中我们还可以看到另外一个位运算的技巧,就是在对一个 2 的幂次的数进行取模或者除操作的时候,也可以通过位运算来实现,这比直接的除法和取模运算有着更好的性能,虽然在合适的优化级别下,编译器也可能替我们完成这样的优化。

寻找最低位 1 的位置

接着我们来介绍下一些其他的应用技巧。

找到一个数字二进制里最低位的 1 的位置,直觉上你也许会想到按位遍历,这种算法的时间复杂是 O(n),性能上不尽如人意。

如果你曾经接触过树状数组,你可能就会对此有不同的看法,树状数组的一个核心概念是 计算 lowbit,即计算一个数字二进制里最低位 1 的幂次。它之所以有着不错的时间复杂度(O(logN)),便是因为能够在 O(1) 或者说常数的时间内得到答案。

int lowbit(int x)
{
    return x & ~(x - 1);
}
Salin selepas log masuk

这个技巧事实上和上述对齐的方式类似,比如 x 是 00...111000 这样的数字,则 x - 1 就成了 00...110111,对之取反,则把原本 x 低位连续的 0 所在的位又重新置为了 0(而原本最低位 1 的位置还是为 1),我们会发现除了最低位 1 的那个位置,其他位置上的值和 x 都是相反的,因此两者进行按位与操作后,结果里只可能有一个 1,便是原本 x 最低位的 1。

寻找最高位 1 的位置

换一个问题,这次不是寻找最低位,而是寻找最高位的 1。

这个问题有着它实际的意义,比如在设计一个 best-fit 的内存池的时候,我们需要找到一个比用户期望的 size 大的第一个 2 的幂次。

同样地,你可能还是会先想到遍历。

事实上 Intel CPU 指令集有这么一条指令,就是用以计算一个数二进制里最高位 1 的位置。

size_t bsf(size_t input)
{
    size_t pos;

    __asm__("bsfq %1, %0" : "=r" (pos) : "rm" (input));

    return pos;
}
Salin selepas log masuk

这很好,但是这里我们还是期望用位运算找到这个 1 的位置。

size_t bsf(size_t input)
{
    input |= input >> 1;
    input |= input >> 2;
    input |= input >> 4;
    input |= input >> 8;
    input |= input >> 16;
    input |= input >> 32;

    return input - (input >> 1);
}
Salin selepas log masuk

这便是我们所期望的计算方式了。我们来分析下这个计算的原理。

需要说明的是,如果你需要计算的值是 32 位的,则上面函数的最后一步 input |= input >> 32 是不需要的,具体执行多少次 input |= input >> m, 是由 input 的位长决定的,比如 8 位则进行 3 次,16 位进行 4 次,而 32 位进行 5 次。

为了更简洁地进行描述,我们用 8 位的数字进行分析,设一个数 A,它的二进制如下所示。

A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]
Salin selepas log masuk

上面的计算过程如下。

A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]
0    A[7] A[6] A[5] A[4] A[3] A[2] A[1]
---------------------------------------
A[7] A[7]|A[6] A[6]|A[5] A[5]|A[4] A[4]|A[3] A[3]|A[2] A[2]|A[1] A[1]|A[0]
0    0         A[7]      A[7]|A[6] A[6]|A[5] A[5]|A[4] A[4]|A[3] A[3]|A[2]
--------------------------------------------------------------------------
A[7] A[7]|A[6] A[7]|A[6]|A[5] A[7]|A[6]|A[5]|A[4] A[6]|A[5]|A[4]|A[3] A[5]|A[4]|A[3]|A[2] A[4]|A[3]|A[2]|A[1] A[3]|A[2]|A[1]|A[0]
0    0         0              0                   A[7]                A[7]|A[6]           A[7]|A[6]|A[5]      A[7]|A[6]|A[5]|A[4]
---------------------------------------------------------------------------------------------------------------------------------
A[7] A[7]|A[6] A[7]|A[6]|A[5]  A[7]|A[6]|A[5]|A[4] A[7]|A[6]|A[5]|A[4]|A[3] A[7]|A[6]|A[5]|A[4]|A[3]|A[2] A[7]|A[6]|A[5]|A[4]|A[3]|A[2]|A[1] A[7]|A[6]|A[5]|A[4]|A[3]|A[2]|A[1]|A[0]
Salin selepas log masuk

我们可以看到,最终 A 的最高位是 A[7],次高位是 A[7]|A[6],第三位是 A[7]|A[6]|A[5],最低位 A[7]|A[6]|A[5]|A[4]|A[3]|A[2]|A[1]|A[0]

假设最高位的 1 是在第 m 位(从右向左算,最低位称为第 0 位),那么此时的低 m 位都是 1,其他的高位都是 0。也就是说,A 将会是 2 的某幂再减一,于是最后一步(input - (input >> 1))的用意也就非常明显了,即将除最高位以外的 1 全部置为 0,最后返回的便是原来的 input 里最高位 1 的对应幂了。

计算 1 的个数

如何计算一个数字二进制表示里有多少个 1 呢?

直觉上可能还是会想到遍历(遍历真是个好东西),让我们计算下复杂度,一个字节就是 O(8),4 个字节就是 O(32),而 8 字节就是 O(64)了。

如果这个计算会频繁地出现在你的程序里,当你在用 perf 这样的性能分析工具观察你的应用程序时,它或许就会得到你的关注,而你不得不去想办法进行优化。

事实上《深入理解计算机系统》这本书里就有一个这个问题,它要求计算一个无符号长整型数字二进制里 1 的个数,而且希望你使用最优的算法,最终这个算法的复杂度是 O(8)。

long fun_c(unsigned long x)
{
    long val = 0;
    int i;
    for (i = 0; i < 8; i++) {
        val += x & 0x0101010101010101L;
        x >>= 1;
    }

    val += val >> 32;
    val += val >> 16;
    val += val >> 8;

    return val & 0xFF;
}
Salin selepas log masuk

这个算法在我的另外一篇文章里曾有过分析。

观察 0x0101010101010101 这个数,每 8 位只有最后一位是 1。那么 x 与之做按位与,会得到下面的结果:

设 A[i] 表示 x 二进制表示里第 i 位的值(0 或 1)。
第一次:
A[0] + (A[8] << 8) + (A[16] << 16) + (A[24] << 24) + (A[32] << 32) + (A[40] << 40) + (A[48] << 48) + (A[56] << 56)
第二次:
A[1] + (A[9] << 8) + (A[17] << 16) + (A[25] << 24) + (A[33] << 32) + (A[41] << 40) + (A[49] << 48) + (A[57] << 56)
......
第八次:
A[7] + (A[15] << 8) + (A[23] << 16) + (A[31] << 24) + (A[39] << 32) + (A[47] << 40) + (A[55] << 48) + (A[63] << 56)
相加后得到的值为:
(A[63] + A[62] + A[61] + A[60] + A[59] + A[58] + A[57] + A[56]) << 56 +
(A[55] + A[54] + A[53] + A[52] + A[51] + A[50] + A[49] + A[48]) << 48 +
(A[47] + A[46] + A[45] + A[44] + A[43] + A[42] + A[41] + A[40]) << 40 +
(A[39] + A[38] + A[37] + A[36] + A[35] + A[34] + A[33] + A[32]) << 32 +
(A[31] + A[30] + A[29] + A[28] + A[27] + A[26] + A[25] + A[24]) << 24 +
(A[23] + A[22] + A[21] + A[20] + A[19] + A[18] + A[17] + A[16]) << 16 +
(A[15] + A[14] + A[13] + A[12] + A[11] + A[10] + A[9]  + A[8])  << 8  +
(A[7]  + A[6]  + A[5]  + A[4]  + A[3]  + A[2]  + A[1]  + A[0])
Salin selepas log masuk

之后的三个操作:

val += val >> 32;
val += val >> 16;
val += val >> 8;
Salin selepas log masuk

每次将 val 折半然后相加。

第一次折半(val += val >> 32)后,得到的 val 的低 32 位:

(A[31] + A[30] + A[29] + A[28] + A[27] + A[26] + A[25] + A[24] + A[63] + A[62] + A[61] + A[60] + A[59] + A[58] + A[57] + A[56]) << 24 +
(A[23] + A[22] + A[21] + A[20] + A[19] + A[18] + A[17] + A[16] + A[55] + A[54] + A[53] + A[52] + A[51] + A[50] + A[49] + A[48]) << 16 +
(A[15] + A[14] + A[13] + A[12] + A[11] + A[10] + A[9]  + A[8] + A[47] + A[46] + A[45] + A[44] + A[43] + A[42] + A[41] + A[40])  << 8  +
(A[7]  + A[6]  + A[5]  + A[4]  + A[3]  + A[2]  + A[1]  + A[0] + A[39] + A[38] + A[37] + A[36] + A[35] + A[34] + A[33] + A[32])
Salin selepas log masuk

第二次折半(val += val >> 16)后,得到的 val 的低 16 位:

15] + A[14] + A[13] + A[12] + A[11] + A[10] + A[9]  + A[8] + A[47] + A[46] + A[45] + A[44] + A[43] + A[42] + A[41] + A[40] + A[31] + A[30] + A[29] + A[28] + A[27] + A[26] + A[25] + A[24] + A[63] + A[62] + A[61] + A[60] + A[59] + A[58] + A[57] + A[56])  << 8  +
(A[7]  + A[6]  + A[5]  + A[4]  + A[3]  + A[2]  + A[1]  + A[0] + A[39] + A[38] + A[37] + A[36] + A[35] + A[34] + A[33] + A[32] + A[23] + A[22] + A[21] + A[20] + A[19] + A[18] + A[17] + A[16] + A[55] + A[54] + A[53] + A[52] + A[51] + A[50] + A[49] + A[48])
Salin selepas log masuk

第三次折半(val += val >> 8)后,得到的 val 的低 8 位:

(A[7]  + A[6]  + A[5]  + A[4]  + A[3]  + A[2]  + A[1]  + A[0] + A[39] + A[38] + A[37] + A[36] + A[35] + A[34] + A[33] + A[32] + A[23] + A[22] + A[21] + A[20] + A[19] + A[18] + A[17] + A[16] + A[55] + A[54] + A[53] + A[52] + A[51] + A[50] + A[49] + A[48] + A[15] + A[14] + A[13] + A[12] + A[11] + A[10] + A[9]  + A[8] + A[47] + A[46] + A[45] + A[44] + A[43] + A[42] + A[41] + A[40] + A[31] + A[30] + A[29] + A[28] + A[27] + A[26] + A[25] + A[24] + A[63] + A[62] + A[61] + A[60] + A[59] + A[58] + A[57] + A[56])
Salin selepas log masuk

可以看到,经过三次折半,64 个位的值全部累加到低 8 位,最后取出低 8 位的值,就是 x 这个数字二进制里 1 的数目了,这个问题在数学上称为“计算汉明重量”。

位运算以它独特的优点(简洁、性能棒)吸引着程序员,比如 LuaJIT 内置了 bit 这个模块,允许程序员在 Lua 程序里使用位运算。学会使用位运算对程序员来说也是一种进步,值得我们一直去研究。

相关推荐:nginx教程

Atas ialah kandungan terperinci 位运算与nginx性能的联系. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Perbandingan prestasi rangka kerja Java yang berbeza Perbandingan prestasi rangka kerja Java yang berbeza Jun 05, 2024 pm 07:14 PM

Perbandingan prestasi rangka kerja Java yang berbeza: Pemprosesan permintaan REST API: Vert.x adalah yang terbaik, dengan kadar permintaan 2 kali SpringBoot dan 3 kali Dropwizard. Pertanyaan pangkalan data: HibernateORM SpringBoot adalah lebih baik daripada Vert.x dan ORM Dropwizard. Operasi caching: Pelanggan Hazelcast Vert.x lebih unggul daripada mekanisme caching SpringBoot dan Dropwizard. Rangka kerja yang sesuai: Pilih mengikut keperluan aplikasi Vert.x sesuai untuk perkhidmatan web berprestasi tinggi, SpringBoot sesuai untuk aplikasi intensif data, dan Dropwizard sesuai untuk seni bina perkhidmatan mikro.

Bagaimana untuk mengoptimumkan prestasi program berbilang benang dalam C++? Bagaimana untuk mengoptimumkan prestasi program berbilang benang dalam C++? Jun 05, 2024 pm 02:04 PM

Teknik berkesan untuk mengoptimumkan prestasi berbilang benang C++ termasuk mengehadkan bilangan utas untuk mengelakkan perbalahan sumber. Gunakan kunci mutex ringan untuk mengurangkan perbalahan. Optimumkan skop kunci dan minimumkan masa menunggu. Gunakan struktur data tanpa kunci untuk menambah baik keselarasan. Elakkan sibuk menunggu dan maklumkan urutan ketersediaan sumber melalui acara.

Perbandingan prestasi C++ dengan bahasa lain Perbandingan prestasi C++ dengan bahasa lain Jun 01, 2024 pm 10:04 PM

Apabila membangunkan aplikasi berprestasi tinggi, C++ mengatasi bahasa lain, terutamanya dalam penanda aras mikro. Dalam penanda aras makro, kemudahan dan mekanisme pengoptimuman bahasa lain seperti Java dan C# mungkin berprestasi lebih baik. Dalam kes praktikal, C++ berprestasi baik dalam pemprosesan imej, pengiraan berangka dan pembangunan permainan, dan kawalan langsungnya terhadap pengurusan memori dan akses perkakasan membawa kelebihan prestasi yang jelas.

Sejauh manakah prestasi penjana nombor rawak di Golang? Sejauh manakah prestasi penjana nombor rawak di Golang? Jun 01, 2024 pm 09:15 PM

Cara terbaik untuk menjana nombor rawak dalam Go bergantung pada tahap keselamatan yang diperlukan oleh aplikasi anda. Keselamatan rendah: Gunakan pakej matematik/rand untuk menjana nombor pseudo-rawak, sesuai untuk kebanyakan aplikasi. Keselamatan tinggi: Gunakan pakej crypto/rand untuk menjana bait rawak selamat secara kriptografi, sesuai untuk aplikasi yang memerlukan rawak yang lebih kuat.

Perbandingan prestasi rangka kerja Java Perbandingan prestasi rangka kerja Java Jun 04, 2024 pm 03:56 PM

Mengikut penanda aras, untuk aplikasi kecil dan berprestasi tinggi, Quarkus (permulaan pantas, memori rendah) atau Micronaut (TechEmpower cemerlang) adalah pilihan yang ideal. SpringBoot sesuai untuk aplikasi bertindan penuh yang besar, tetapi mempunyai masa permulaan dan penggunaan memori yang lebih perlahan.

Akses fail tapak WordPress adalah terhad: Mengapa fail .txt saya tidak boleh diakses melalui nama domain? Akses fail tapak WordPress adalah terhad: Mengapa fail .txt saya tidak boleh diakses melalui nama domain? Apr 01, 2025 pm 03:00 PM

Akses fail tapak WordPress adalah terhad: Menyelesaikan masalah sebab mengapa fail .txt tidak dapat diakses baru -baru ini. Sebilangan pengguna menghadapi masalah ketika mengkonfigurasi nama domain perniagaan program mini: � ...

Bagaimana untuk membuat Php5.6 dan Php7 wujud bersama melalui konfigurasi Nginx pada pelayan yang sama? Bagaimana untuk membuat Php5.6 dan Php7 wujud bersama melalui konfigurasi Nginx pada pelayan yang sama? Apr 01, 2025 pm 03:15 PM

Menjalankan pelbagai versi PHP secara serentak dalam sistem yang sama adalah keperluan umum, terutamanya apabila projek yang berbeza bergantung pada versi PHP yang berlainan. Bagaimana untuk sama ...

Bagaimana untuk mengintegrasikan perkhidmatan Node.js atau Python dengan cekap di bawah seni bina lampu? Bagaimana untuk mengintegrasikan perkhidmatan Node.js atau Python dengan cekap di bawah seni bina lampu? Apr 01, 2025 pm 02:48 PM

Ramai pemaju laman web menghadapi masalah mengintegrasikan perkhidmatan node.js atau python di bawah seni bina lampu: lampu sedia ada (Linux Apache MySQL PHP) Laman web seni bina memerlukan ...

See all articles