简介Python的sklearn机器学习算法
免费学习推荐:python视频教程
导入必要通用模块
import pandas as pdimport matplotlib.pyplot as pltimport osimport numpy as npimport copyimport reimport math
一 机器学习通用框架:以knn为例
#利用邻近点方式训练数据不太适用于高维数据from sklearn.model_selection import train_test_split#将数据分为测试集和训练集from sklearn.neighbors import KNeighborsClassifier#利用邻近点方式训练数据#1.读取数据data=pd.read_excel('数据/样本数据.xlsx')#2.将数据标准化from sklearn import preprocessingfor col in data.columns[2:]:#为了不破坏数据集中的离散变量,只将数值种类数高于10的连续变量标准化 if len(set(data[col]))>10: data[col]=preprocessing.scale(data[col])#3.构造自变量和因变量并划分为训练集和测试集X=data[['month_income','education_outcome','relationship_outcome', 'entertainment_outcome','traffic_', 'express', 'express_distance','satisfac', 'wifi_neghbor','wifi_relative', 'wifi_frend', 'internet']]y=data['wifi']X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3)#利用train_test_split进行将训练集和测试集进行分开,test_size占30%#4.模型拟合model=KNeighborsClassifier()#引入训练方法model.fit(X_train,y_train)#进行填充测试数据进行训练y_predict=model.predict(X_test)#利用测试集数据作出预测#通过修改判别概率标准修改预测结果proba=model.predict_proba(X_test)#返回基于各个测试集样本所预测的结果为0和为1的概率值#5.模型评价#(1)测试集样本数据拟合优度,model.score(X,y)model.score(X_test,y_test)#(2)构建混淆矩阵,判断预测精准程度""" 混淆矩阵中行代表真实值,列代表预测值 TN:实际为0预测为0的个数 FP:实际为0预测为1的个数 FN:实际为1预测为0的个数 TP:实际为1预测为1的个数 精准率precision=TP/(TP+FP)——被预测为1的样本的的预测正确率 召回率recall=TP/(TP+FN)——实际为1的样本的正确预测率 """from sklearn.metrics import confusion_matrix cfm=confusion_matrix(y_test, y_predict)plt.matshow(cfm,cmap=plt.cm.gray)#cmap参数为绘制矩阵的颜色集合,这里使用灰度plt.show()#(3)精准率和召回率from sklearn.metrics import precision_score,recall_score precision_score(y_test, y_predict)# 精准率recall_score(y_test, y_predict)#召回率#(4)错误率矩阵row_sums = np.sum(cfm,axis=1)err_matrix = cfm/row_sums np.fill_diagonal(err_matrix,0)#对err_matrix矩阵的对角线置0,因为这是预测正确的部分,不关心plt.matshow(err_matrix,cmap=plt.cm.gray)#亮度越高的地方代表错误率越高plt.show()
二 数据处理
#1.构造数据集from sklearn import datasets#引入数据集#n_samples为生成样本的数量,n_features为X中自变量的个数,n_targets为y中因变量的个数,bias表示使线性模型发生偏差的程度,X,y=datasets.make_regression(n_samples=100,n_features=1,n_targets=1,noise=1,bias=0.5,tail_strength=0.1)plt.figure(figsize=(12,12))plt.scatter(X,y)#2.读取数据data=pd.read_excel('数据/样本数据.xlsx')#3.将数据标准化——preprocessing.scale(data)from sklearn import preprocessing#为了不破坏数据集中的离散变量,只将数值种类数高于10的连续变量标准化for col in data.columns[2:]: if len(set(data[col]))>10: data[col]=preprocessing.scale(data[col])
三 回归
1.普通最小二乘线性回归
import numpy as npfrom sklearn.linear_model import LinearRegressionfrom sklearn.model_selection import train_test_split X=data[['work', 'work_time', 'work_salary', 'work_address', 'worker_number', 'month_income', 'total_area', 'own_area', 'rend_area', 'out_area', 'agricultal_income', 'things', 'wifi', 'internet_fee', 'cloth_outcome', 'education_outcome', 'medcine_outcome', 'person_medicne_outcome', 'relationship_outcome', 'food_outcome', 'entertainment_outcome', 'agriculta_outcome', 'other_outcome', 'owe', 'owe_total', 'debt', 'debt_way', 'distance_debt', 'distance_market', 'traffic_', 'express', 'express_distance', 'exercise', 'satisfac', 'wifi_neghbor', 'wifi_relative', 'wifi_frend', 'internet', 'medical_insurance']]y=data['total_income']model=LinearRegression().fit(X,y)#拟合模型model.score(X,y)#拟合优度model.coef_#查看拟合系数model.intercept_#查看拟合截距项model.predict(np.array(X.ix[25,:]).reshape(1,-1))#预测model.get_params()#得到模型的参数
2.逻辑回归Logit
from sklearn.linear_model import LogisticRegression#2.1数据处理X=data[['month_income', 'education_outcome','relationship_outcome', 'entertainment_outcome','traffic_', 'express', 'express_distance','satisfac', 'wifi_neghbor','wifi_relative', 'wifi_frend', 'internet']]y=data['wifi']X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3)#利用train_test_split进行将训练集和测试集进行分开,test_size占30%#2.2模型拟合model = LogisticRegression()model.fit(X_train,y_train)model.score(X_test,y_test)#2.3模型预测y_predict = model.predict(X_test)#2.4通过调整判别分数标准,来调整判别结果decsion_scores = model.decision_function(X_test)#用于决定预测值取值的判别分数y_predict = decsion_scores>=5.0#将判别分数标准调整为5#2.5通过 精准率——召回率曲线图 寻找最优判别标准#由于随着判别标准的变化,精确率和召回率此消彼长,因此需要寻找一个最佳的判别标准使得精准率和召回率尽可能大from sklearn.metrics import precision_recall_curve precisions,recalls,thresholds = precision_recall_curve(y_test,decsion_scores)#thresholds表示所有可能得判别标准,即判别分数最大与最小值之间的范围#由于precisions和recalls中比thresholds多了一个元素,因此要绘制曲线,先去掉这个元素plt.plot(thresholds,precisions[:-1])plt.plot(thresholds,recalls[:-1])plt.show()y_predict = decsion_scores>=2#根据上图显示,两线交于-0.3处,因此将判别分数标准调整为-0.3#2.6绘制ROC曲线:用于描述TPR和FPR之间的关系,ROC曲线围成的面积越大,说明模型越好"""TPR即是召回率_越大越好,FPR=(FP)/(TN+FP)_越小越好"""from sklearn.metrics import roc_curve fprs,tprs,thresholds = roc_curve(y_test,decsion_scores)plt.plot(fprs,tprs)plt.show()#2.7绘制混淆矩阵from sklearn.metrics import confusion_matrix,precision_score,recall_score cfm =confusion_matrix(y_test, y_predict)# 构建混淆矩阵并绘制混淆矩阵热力图plt.matshow(cfm,cmap=plt.cm.gray)#cmap参数为绘制矩阵的颜色集合,这里使用灰度plt.show()precision_score(y_test, y_predict)# 精准率recall_score(y_test, y_predict)#召回率
四 模型评价
#1.混淆矩阵,精准率和召回率from sklearn.metrics import confusion_matrix,precision_score,recall_score""" 混淆矩阵中行代表真实值,列代表预测值 TN:实际为0预测为0的个数 FP:实际为0预测为1的个数 FN:实际为1预测为0的个数 TP:实际为1预测为1的个数 精准率precision=TP/(TP+FP)——被预测为1的样本的的预测正确率 召回率recall=TP/(TP+FN)——实际为1的样本的正确预测率 """cfm =confusion_matrix(y_test, y_predict)# 构建混淆矩阵并绘制混淆矩阵热力图plt.matshow(cfm,cmap=plt.cm.gray)#cmap参数为绘制矩阵的颜色集合,这里使用灰度plt.show()precision_score(y_test, y_predict)# 精准率recall_score(y_test, y_predict)#召回率#2.精准率和召回率作图:由于精准率和召回率此消彼长,应当选择适当的参数使二者同时尽可能的大#3.调和平均值"""精准率和召回率的调和平均值"""from sklearn.metrics import f1_score f1_score(y_test,y_predict)#4.错误率矩阵row_sums = np.sum(cfm,axis=1)err_matrix = cfm/row_sums np.fill_diagonal(err_matrix,0)#对err_matrix矩阵的对角线置0,因为这是预测正确的部分,不关心plt.matshow(err_matrix,cmap=plt.cm.gray)#亮度越高的地方代表错误率越高plt.show()
大量免费学习推荐,敬请访问python教程(视频)
Atas ialah kandungan terperinci 简介Python的sklearn机器学习算法. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



MySQL mempunyai versi komuniti percuma dan versi perusahaan berbayar. Versi komuniti boleh digunakan dan diubahsuai secara percuma, tetapi sokongannya terhad dan sesuai untuk aplikasi dengan keperluan kestabilan yang rendah dan keupayaan teknikal yang kuat. Edisi Enterprise menyediakan sokongan komersil yang komprehensif untuk aplikasi yang memerlukan pangkalan data yang stabil, boleh dipercayai, berprestasi tinggi dan bersedia membayar sokongan. Faktor yang dipertimbangkan apabila memilih versi termasuk kritikal aplikasi, belanjawan, dan kemahiran teknikal. Tidak ada pilihan yang sempurna, hanya pilihan yang paling sesuai, dan anda perlu memilih dengan teliti mengikut keadaan tertentu.

Artikel ini memperkenalkan operasi pangkalan data MySQL. Pertama, anda perlu memasang klien MySQL, seperti MySqlworkbench atau Command Line Client. 1. Gunakan perintah MySQL-Uroot-P untuk menyambung ke pelayan dan log masuk dengan kata laluan akaun root; 2. Gunakan CreateTatabase untuk membuat pangkalan data, dan gunakan Pilih pangkalan data; 3. Gunakan createtable untuk membuat jadual, menentukan medan dan jenis data; 4. Gunakan InsertInto untuk memasukkan data, data pertanyaan, kemas kini data dengan kemas kini, dan padam data dengan padam. Hanya dengan menguasai langkah -langkah ini, belajar menangani masalah biasa dan mengoptimumkan prestasi pangkalan data anda boleh menggunakan MySQL dengan cekap.

Sebab utama kegagalan pemasangan MySQL adalah: 1. Isu kebenaran, anda perlu menjalankan sebagai pentadbir atau menggunakan perintah sudo; 2. Ketergantungan hilang, dan anda perlu memasang pakej pembangunan yang relevan; 3. Konflik pelabuhan, anda perlu menutup program yang menduduki port 3306 atau mengubah suai fail konfigurasi; 4. Pakej pemasangan adalah korup, anda perlu memuat turun dan mengesahkan integriti; 5. Pembolehubah persekitaran dikonfigurasikan dengan salah, dan pembolehubah persekitaran mesti dikonfigurasi dengan betul mengikut sistem operasi. Selesaikan masalah ini dan periksa dengan teliti setiap langkah untuk berjaya memasang MySQL.

Fail muat turun mysql adalah korup, apa yang perlu saya lakukan? Malangnya, jika anda memuat turun MySQL, anda boleh menghadapi rasuah fail. Ia benar -benar tidak mudah hari ini! Artikel ini akan bercakap tentang cara menyelesaikan masalah ini supaya semua orang dapat mengelakkan lencongan. Selepas membacanya, anda bukan sahaja boleh membaiki pakej pemasangan MySQL yang rosak, tetapi juga mempunyai pemahaman yang lebih mendalam tentang proses muat turun dan pemasangan untuk mengelakkan terjebak pada masa akan datang. Mari kita bercakap tentang mengapa memuat turun fail rosak. Terdapat banyak sebab untuk ini. Masalah rangkaian adalah pelakunya. Gangguan dalam proses muat turun dan ketidakstabilan dalam rangkaian boleh menyebabkan rasuah fail. Terdapat juga masalah dengan sumber muat turun itu sendiri. Fail pelayan itu sendiri rosak, dan sudah tentu ia juga dipecahkan jika anda memuat turunnya. Di samping itu, pengimbasan "ghairah" yang berlebihan beberapa perisian antivirus juga boleh menyebabkan rasuah fail. Masalah Diagnostik: Tentukan sama ada fail itu benar -benar korup

MySQL boleh berjalan tanpa sambungan rangkaian untuk penyimpanan dan pengurusan data asas. Walau bagaimanapun, sambungan rangkaian diperlukan untuk interaksi dengan sistem lain, akses jauh, atau menggunakan ciri -ciri canggih seperti replikasi dan clustering. Di samping itu, langkah -langkah keselamatan (seperti firewall), pengoptimuman prestasi (pilih sambungan rangkaian yang betul), dan sandaran data adalah penting untuk menyambung ke Internet.

Panduan Pengoptimuman Prestasi Pangkalan Data MySQL Dalam aplikasi yang berintensifkan sumber, pangkalan data MySQL memainkan peranan penting dan bertanggungjawab untuk menguruskan urus niaga besar-besaran. Walau bagaimanapun, apabila skala aplikasi berkembang, kemunculan prestasi pangkalan data sering menjadi kekangan. Artikel ini akan meneroka satu siri strategi pengoptimuman prestasi MySQL yang berkesan untuk memastikan aplikasi anda tetap cekap dan responsif di bawah beban tinggi. Kami akan menggabungkan kes-kes sebenar untuk menerangkan teknologi utama yang mendalam seperti pengindeksan, pengoptimuman pertanyaan, reka bentuk pangkalan data dan caching. 1. Reka bentuk seni bina pangkalan data dan seni bina pangkalan data yang dioptimumkan adalah asas pengoptimuman prestasi MySQL. Berikut adalah beberapa prinsip teras: Memilih jenis data yang betul dan memilih jenis data terkecil yang memenuhi keperluan bukan sahaja dapat menjimatkan ruang penyimpanan, tetapi juga meningkatkan kelajuan pemprosesan data.

MySQL enggan memulakan? Jangan panik, mari kita periksa! Ramai kawan mendapati bahawa perkhidmatan itu tidak dapat dimulakan selepas memasang MySQL, dan mereka sangat cemas! Jangan risau, artikel ini akan membawa anda untuk menangani dengan tenang dan mengetahui dalang di belakangnya! Selepas membacanya, anda bukan sahaja dapat menyelesaikan masalah ini, tetapi juga meningkatkan pemahaman anda tentang perkhidmatan MySQL dan idea anda untuk masalah penyelesaian masalah, dan menjadi pentadbir pangkalan data yang lebih kuat! Perkhidmatan MySQL gagal bermula, dan terdapat banyak sebab, mulai dari kesilapan konfigurasi mudah kepada masalah sistem yang kompleks. Mari kita mulakan dengan aspek yang paling biasa. Pengetahuan asas: Penerangan ringkas mengenai proses permulaan perkhidmatan MySQL Startup. Ringkasnya, sistem operasi memuatkan fail yang berkaitan dengan MySQL dan kemudian memulakan daemon MySQL. Ini melibatkan konfigurasi

Pengoptimuman prestasi MySQL perlu bermula dari tiga aspek: konfigurasi pemasangan, pengindeksan dan pengoptimuman pertanyaan, pemantauan dan penalaan. 1. Selepas pemasangan, anda perlu menyesuaikan fail my.cnf mengikut konfigurasi pelayan, seperti parameter innodb_buffer_pool_size, dan tutup query_cache_size; 2. Buat indeks yang sesuai untuk mengelakkan indeks yang berlebihan, dan mengoptimumkan pernyataan pertanyaan, seperti menggunakan perintah menjelaskan untuk menganalisis pelan pelaksanaan; 3. Gunakan alat pemantauan MySQL sendiri (ShowProcessList, ShowStatus) untuk memantau kesihatan pangkalan data, dan kerap membuat semula dan mengatur pangkalan data. Hanya dengan terus mengoptimumkan langkah -langkah ini, prestasi pangkalan data MySQL diperbaiki.
