Python地理数据处理之分析使用GR进行矢量
免费学习推荐:python视频教程
1、叠加分析
叠加分析操作:
plot颜色:‘r’ 红色, ‘g’ 绿色, ‘b’ 蓝色, ‘c’ 青色, ‘y’ 黄色, ‘m’ 品红, ‘k’ 黑色, ‘w’ 白色。
新奥尔良城市边界、水体和湿地的简单地图:
1.新奥尔良城市沼泽区域分析:
import osfrom osgeo import ogrfrom ospybook.vectorplotter import VectorPlotter data_dir = r'E:\Google chrome\Download\gis with python\osgeopy data'# 得到新奥尔良附近的一个特定的沼泽特征vp = VectorPlotter(True)water_ds = ogr.Open(os.path.join(data_dir, 'US', 'wtrbdyp010.shp'))water_lyr = water_ds.GetLayer(0)water_lyr.SetAttributeFilter('WaterbdyID = 1011327')marsh_feat = water_lyr.GetNextFeature()marsh_geom = marsh_feat.geometry().Clone()vp.plot(marsh_geom, 'c')# 获得新奥尔良边城市边界nola_ds = ogr.Open(os.path.join(data_dir, 'Louisiana', 'NOLA.shp'))nola_lyr = nola_ds.GetLayer(0)nola_feat = nola_lyr.GetNextFeature()nola_geom = nola_feat.geometry().Clone()vp.plot(nola_geom, fill=False, ec='red', ls='dashed', lw=3)# 相交沼泽和边界多边形得到沼泽的部分# 位于新奥尔良城市边界内intersection = marsh_geom.Intersection(nola_geom)vp.plot(intersection, 'yellow', hatch='x')vp.draw()
2.计算城市的湿地面积:
# 获得城市内的湿地多边形# 将多边形的面积进行累加# 除以城市面积water_lyr.SetAttributeFilter("Feature != 'Lake'") # 限定对象water_lyr.SetSpatialFilter(nola_geom)wetlands_area = 0# 累加多边形面积for feat in water_lyr: intersect = feat.geometry().Intersection(nola_geom) wetlands_area += intersect.GetArea()pcnt = wetlands_area / nola_geom.GetArea()print('{:.1%} of New Orleans is wetland'.format(pcnt))
28.7% of New Orleans is wetland
注:通过空间过滤和属性过滤,将不必要的要素过滤,这样可以显著减少处理时间。
3.两图层求交:
# 将湖泊数据排除# 在内存中创建一个临时图层# 将图层相交,将结果储存在临时图层中water_lyr.SetAttributeFilter("Feature != 'Lake'")water_lyr.SetSpatialFilter(nola_geom)wetlands_area = 0for feat in water_lyr: intersect = feat.geometry().Intersection(nola_geom) # 求交 wetlands_area += intersect.GetArea()pcnt = wetlands_area / nola_geom.GetArea()print('{:.1%} of New Orleans is wetland'.format(pcnt))water_lyr.SetSpatialFilter(None)water_lyr.SetAttributeFilter("Feature != 'Lake'")memory_driver = ogr.GetDriverByName('Memory')temp_ds = memory_driver.CreateDataSource('temp')temp_lyr = temp_ds.CreateLayer('temp')nola_lyr.Intersection(water_lyr, temp_lyr)sql = 'SELECT SUM(OGR_GEOM_AREA) AS area FROM temp'lyr = temp_ds.ExecuteSQL(sql)pcnt = lyr.GetFeature(0).GetField('area') / nola_geom.GetArea()print('{:.1%} of New Orleans is wetland'.format(pcnt))
28.7% of New Orleans is wetland
2、邻近分析(确定要素间的距离)
OGR包含两个邻近分析工具:测量几何要素的距离;创建缓冲区。
1.确定美国有多少城市位于火山10英里(1英里=1609.3米)的范围之内。确定火山附近城市数量的存在问题的方法:
from osgeo import ogr shp_ds = ogr.Open(r'E:\Google chrome\Download\gis with python\osgeopy data\US')volcano_lyr = shp_ds.GetLayer('us_volcanos_albers')cities_lyr = shp_ds.GetLayer('cities_albers')# 在内存中创建一个临时层来存储缓冲区memory_driver = ogr.GetDriverByName('memory')memory_ds = memory_driver.CreateDataSource('temp')buff_lyr = memory_ds.CreateLayer('buffer')buff_feat = ogr.Feature(buff_lyr.GetLayerDefn())# 缓缓冲每一个火山点,将结果添加到缓冲图层中for volcano_feat in volcano_lyr: buff_geom = volcano_feat.geometry().Buffer(16000) tmp = buff_feat.SetGeometry(buff_geom) tmp = buff_lyr.CreateFeature(buff_feat)# 将城市图层与火山缓冲区图层相交result_lyr = memory_ds.CreateLayer('result')buff_lyr.Intersection(cities_lyr, result_lyr)print('Cities: {}'.format(result_lyr.GetFeatureCount()))
Cities: 83
2.一个更好地确定火山附近城市数量方法:
from osgeo import ogr shp_ds = ogr.Open(r'E:\Google chrome\Download\gis with python\osgeopy data\US')volcano_lyr = shp_ds.GetLayer('us_volcanos_albers')cities_lyr = shp_ds.GetLayer('cities_albers')# 将缓冲区添加到一个复合多边形,而不是一个临时图层multipoly = ogr.Geometry(ogr.wkbMultiPolygon)for volcano_feat in volcano_lyr: buff_geom = volcano_feat.geometry().Buffer(16000) multipoly.AddGeometry(buff_geom)# 将所有的缓冲区联合在一起得到一个可以使用的多边形作为空间过滤器cities_lyr.SetSpatialFilter(multipoly.UnionCascaded())print('Cities: {}'.format(cities_lyr.GetFeatureCount()))
Cities: 78
注:UnionCascaded():有效地将所有的多边形合并成一个复合多边形
第一个例子中,每当城市位于火山缓冲区内,就会复制到输出结果中。说明一个城市位于多个16000米缓冲区内,将被列入不止一次。
3.计算特定的城市与火山的距离:
import osfrom osgeo import ogrfrom ospybook.vectorplotter import VectorPlotter data_dir = r'E:\Google chrome\Download\gis with python\osgeopy data'shp_ds = ogr.Open(os.path.join(data_dir, 'US'))volcano_lyr = shp_ds.GetLayer('us_volcanos_albers')cities_lyr = shp_ds.GetLayer('cities_albers')# 西雅图到雷尼尔山的距离volcano_lyr.SetAttributeFilter("NAME = 'Rainier'")feat = volcano_lyr.GetNextFeature()rainier = feat.geometry().Clone()cities_lyr.SetSpatialFilter(None)cities_lyr.SetAttributeFilter("NAME = 'Seattle'")feat = cities_lyr.GetNextFeature()seattle = feat.geometry().Clone()meters = round(rainier.Distance(seattle))miles = meters / 1600print('{} meters ({} miles)'.format(meters, miles))
92656 meters (57.91 miles)
3. 用2.5D几何对象,表示两点之间的距离:
# 2Dpt1_2d = ogr.Geometry(ogr.wkbPoint)pt1_2d.AddPoint(15, 15)pt2_2d = ogr.Geometry(ogr.wkbPoint)pt2_2d.AddPoint(15, 19)print(pt1_2d.Distance(pt2_2d))
4.0
# 2.5Dpt1_25d = ogr.Geometry(ogr.wkbPoint25D)pt1_25d.AddPoint(15, 15, 0)pt2_25d = ogr.Geometry(ogr.wkbPoint25D)pt2_25d.AddPoint(15, 19, 3)print(pt1_25d.Distance(pt2_25d))
4.0
将高程Z值考虑进去,真正的距离是5。
# 用2D计算面积ring = ogr.Geometry(ogr.wkbLinearRing)ring.AddPoint(10, 10)ring.AddPoint(10, 20)ring.AddPoint(20, 20)ring.AddPoint(20, 10)poly_2d = ogr.Geometry(ogr.wkbPolygon)poly_2d.AddGeometry(ring)poly_2d.CloseRings()print(poly_2d.GetArea())
100.0
# 用2.5D计算面积ring = ogr.Geometry(ogr.wkbLinearRing)ring.AddPoint(10, 10, 0)ring.AddPoint(10, 20, 0)ring.AddPoint(20, 20, 10)ring.AddPoint(20, 10, 10)poly_25d = ogr.Geometry(ogr.wkbPolygon25D)poly_25d.AddGeometry(ring)poly_25d.CloseRings()print(poly_25d.GetArea())
100.0
2.5D的面积实际上是141。
# 叠加操作同样忽略了高程值Zprint(poly_2d.Contains(pt1_2d))print(poly_25d.Contains(pt1_2d))
True True
相关免费学习推荐:python教程(视频)
Atas ialah kandungan terperinci Python地理数据处理之分析使用GR进行矢量. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

PHP terutamanya pengaturcaraan prosedur, tetapi juga menyokong pengaturcaraan berorientasikan objek (OOP); Python menyokong pelbagai paradigma, termasuk pengaturcaraan OOP, fungsional dan prosedur. PHP sesuai untuk pembangunan web, dan Python sesuai untuk pelbagai aplikasi seperti analisis data dan pembelajaran mesin.

PHP sesuai untuk pembangunan web dan prototaip pesat, dan Python sesuai untuk sains data dan pembelajaran mesin. 1.Php digunakan untuk pembangunan web dinamik, dengan sintaks mudah dan sesuai untuk pembangunan pesat. 2. Python mempunyai sintaks ringkas, sesuai untuk pelbagai bidang, dan mempunyai ekosistem perpustakaan yang kuat.

Python lebih sesuai untuk pemula, dengan lengkung pembelajaran yang lancar dan sintaks ringkas; JavaScript sesuai untuk pembangunan front-end, dengan lengkung pembelajaran yang curam dan sintaks yang fleksibel. 1. Sintaks Python adalah intuitif dan sesuai untuk sains data dan pembangunan back-end. 2. JavaScript adalah fleksibel dan digunakan secara meluas dalam pengaturcaraan depan dan pelayan.

PHP berasal pada tahun 1994 dan dibangunkan oleh Rasmuslerdorf. Ia pada asalnya digunakan untuk mengesan pelawat laman web dan secara beransur-ansur berkembang menjadi bahasa skrip sisi pelayan dan digunakan secara meluas dalam pembangunan web. Python telah dibangunkan oleh Guidovan Rossum pada akhir 1980 -an dan pertama kali dikeluarkan pada tahun 1991. Ia menekankan kebolehbacaan dan kesederhanaan kod, dan sesuai untuk pengkomputeran saintifik, analisis data dan bidang lain.

Kod VS boleh dijalankan pada Windows 8, tetapi pengalaman mungkin tidak hebat. Mula -mula pastikan sistem telah dikemas kini ke patch terkini, kemudian muat turun pakej pemasangan kod VS yang sepadan dengan seni bina sistem dan pasangnya seperti yang diminta. Selepas pemasangan, sedar bahawa beberapa sambungan mungkin tidak sesuai dengan Windows 8 dan perlu mencari sambungan alternatif atau menggunakan sistem Windows yang lebih baru dalam mesin maya. Pasang sambungan yang diperlukan untuk memeriksa sama ada ia berfungsi dengan betul. Walaupun kod VS boleh dilaksanakan pada Windows 8, disyorkan untuk menaik taraf ke sistem Windows yang lebih baru untuk pengalaman dan keselamatan pembangunan yang lebih baik.

Kod VS boleh digunakan untuk menulis Python dan menyediakan banyak ciri yang menjadikannya alat yang ideal untuk membangunkan aplikasi python. Ia membolehkan pengguna untuk: memasang sambungan python untuk mendapatkan fungsi seperti penyempurnaan kod, penonjolan sintaks, dan debugging. Gunakan debugger untuk mengesan kod langkah demi langkah, cari dan selesaikan kesilapan. Mengintegrasikan Git untuk Kawalan Versi. Gunakan alat pemformatan kod untuk mengekalkan konsistensi kod. Gunakan alat linting untuk melihat masalah yang berpotensi lebih awal.

Dalam kod VS, anda boleh menjalankan program di terminal melalui langkah -langkah berikut: Sediakan kod dan buka terminal bersepadu untuk memastikan bahawa direktori kod selaras dengan direktori kerja terminal. Pilih arahan Run mengikut bahasa pengaturcaraan (seperti python python your_file_name.py) untuk memeriksa sama ada ia berjalan dengan jayanya dan menyelesaikan kesilapan. Gunakan debugger untuk meningkatkan kecekapan debug.

Sambungan kod VS menimbulkan risiko yang berniat jahat, seperti menyembunyikan kod jahat, mengeksploitasi kelemahan, dan melancap sebagai sambungan yang sah. Kaedah untuk mengenal pasti sambungan yang berniat jahat termasuk: memeriksa penerbit, membaca komen, memeriksa kod, dan memasang dengan berhati -hati. Langkah -langkah keselamatan juga termasuk: kesedaran keselamatan, tabiat yang baik, kemas kini tetap dan perisian antivirus.
