Rumah > pangkalan data > tutorial mysql > Mengapa mysql tidak menggunakan delete semasa memadam data?

Mengapa mysql tidak menggunakan delete semasa memadam data?

醉折花枝作酒筹
Lepaskan: 2021-07-21 09:28:26
ke hadapan
2746 orang telah melayarinya

Volume data sesetengah jadual berkembang dengan sangat pantas, dan SQL yang sepadan mengimbas banyak data tidak sah, menyebabkan SQL menjadi perlahan Selepas pengesahan, jadual besar ini semuanya adalah air yang mengalir, rekod dan data jenis log, dan hanya 1 hingga 3 yang perlu dikekalkan, pada masa ini adalah perlu untuk membersihkan data dalam jadual untuk mencapai pengurangan berat badan.

Mengapa mysql tidak menggunakan delete semasa memadam data?

Dalam artikel ini, saya akan menerangkan sebab tidak disyorkan untuk memadamkan data daripada aspek pengagihan ruang storan InnoDB, kesan pemadaman terhadap prestasi dan cadangan pengoptimuman.

Seni bina storan InnoDB

Seperti yang anda boleh lihat daripada gambar ini, struktur storan InnoDB terutamanya terdiri daripada dua bahagian: struktur storan logik dan struktur storan fizikal.

Secara logiknya, ia terdiri daripada ruang meja —> segmen atau inod —> Luas kawasan —> Halaman halaman data Unit pengurusan logik Innodb ialah segmen, dan unit minimum peruntukan ruang adalah takat Setiap segmen akan memperuntukkan 32 halaman daripada ruang jadual FREE_PAGE Apabila 32 halaman ini tidak mencukupi, ia akan dikembangkan mengikut prinsip berikut: jika takat semasa kurang daripada 1 takat, ia akan dikembangkan kepada 1 takat apabila ruang jadual kurang daripada 32MB, setiap segmen akan dikembangkan kepada 1 tahap Kembangkan satu tahap pada satu masa jika ruang jadual lebih besar daripada 32MB, lanjutkan 4 tahap pada satu masa.

Secara fizikal ia terdiri terutamanya daripada fail data pengguna sistem dan fail log Fail data terutamanya menyimpan data kamus MySQL dan data pengguna Fail log merekodkan rekod perubahan halaman data dan digunakan untuk pemulihan apabila MySQL ranap .

Ruang jadual Innodb

Storan InnoDB merangkumi tiga jenis ruang jadual: ruang jadual sistem, ruang meja pengguna dan Buat asal ruang jadual.

Ruang jadual sistem: Terutamanya menyimpan data kamus data dalaman MySQL, seperti data di bawah information_schema.

Ruang jadual pengguna: Apabila innodb_file_per_table=1 dihidupkan, jadual data diasingkan daripada ruang jadual sistem dan disimpan dalam fail data dengan arahan table_name.ibd, dan struktur maklumat disimpan dalam table_name.frm dalam fail.

Buat asal ruang jadual: menyimpan Buat asal maklumat, seperti syot kilat bacaan konsisten dan imbas balik, yang semuanya menggunakan maklumat buat asal.

Bermula dari MySQL 8.0, pengguna dibenarkan untuk menyesuaikan ruang jadual Sintaks khusus adalah seperti berikut:

CREATE TABLESPACE tablespace_name
    ADD DATAFILE 'file_name'               #数据文件名
    USE LOGFILE GROUP logfile_group        #自定义日志文件组,一般每组2个logfile。
    [EXTENT_SIZE [=] extent_size]          #区大小
    [INITIAL_SIZE [=] initial_size]        #初始化大小 
    [AUTOEXTEND_SIZE [=] autoextend_size]  #自动扩宽尺寸
    [MAX_SIZE [=] max_size]                #单个文件最大size,最大是32G。
    [NODEGROUP [=] nodegroup_id]           #节点组
    [WAIT]
    [COMMENT [=] comment_text]
    ENGINE [=] engine_name
Salin selepas log masuk

Kelebihannya ialah data panas dan sejuk boleh diasingkan dan disimpan menggunakan. HDD dan SSD masing-masing , yang bukan sahaja boleh mencapai akses yang cekap kepada data, tetapi juga menjimatkan kos Sebagai contoh, anda boleh menambah dua cakera keras 500G, mencipta kumpulan volum vg, membahagikan volum logik lv, mencipta direktori data dan melekap. lv yang sepadan Anggapkan bahawa dua direktori yang dibahagikan ialah /hot_data dan /cold_data.

Dengan cara ini, jadual perniagaan teras seperti jadual pengguna dan jadual pesanan boleh disimpan pada cakera SSD berprestasi tinggi, dan beberapa log dan jadual alir boleh disimpan pada HDD biasa Langkah operasi utama adalah seperti berikut :

#创建热数据表空间
create tablespace tbs_data_hot add datafile '/hot_data/tbs_data_hot01.dbf' max_size 20G;
#创建核心业务表存储在热数据表空间
create table booking(id bigint not null primary key auto_increment, …… ) tablespace tbs_data_hot;
#创建冷数据表空间
create tablespace tbs_data_cold add datafile '/hot_data/tbs_data_cold01.dbf' max_size 20G;
#创建日志,流水,备份类的表存储在冷数据表空间
create table payment_log(id bigint not null primary key auto_increment, …… ) tablespace tbs_data_cold;
#可以移动表到另一个表空间
alter table payment_log tablespace tbs_data_hot;
Salin selepas log masuk

Pengagihan storan Innob

Buat jadual kosong untuk melihat perubahan ruang

mysql> create table user(id bigint not null primary key auto_increment, 
    -> name varchar(20) not null default '' comment '姓名', 
    -> age tinyint not null default 0 comment 'age', 
    -> gender char(1) not null default 'M'  comment '性别',
    -> phone varchar(16) not null default '' comment '手机号',
    -> create_time datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
    -> update_time datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '修改时间'
    -> ) engine = InnoDB DEFAULT CHARSET=utf8mb4 COMMENT '用户信息表';
Query OK, 0 rows affected (0.26 sec)
Salin selepas log masuk
# ls -lh user1.ibd 
-rw-r----- 1 mysql mysql 96K Nov  6 12:48 user.ibd
Salin selepas log masuk

Apabila menetapkan parameter innodb_file_per_table=1, segmen akan dibuat secara automatik apabila mencipta jadual dan diperuntukkan pada masa yang sama Satu tahap mengandungi 32 halaman data untuk menyimpan data Saiz lalai jadual kosong yang dibuat dengan cara ini ialah 96KB Selepas takat digunakan, ia akan digunakan untuk 64 halaman sambungan . Dengan cara ini, untuk beberapa jadual kecil atau buat asal segmen, anda boleh memohon yang lebih besar pada permulaan Kurang ruang, menjimatkan overhed cakera.

# python2 py_innodb_page_info.py -v /data2/mysql/test/user.ibd
page offset 00000000, page type <File Space Header>
page offset 00000001, page type <Insert Buffer Bitmap>
page offset 00000002, page type <File Segment inode>
page offset 00000003, page type <B-tree Node>, page level <0000>
page offset 00000000, page type <Freshly Allocated Page>
page offset 00000000, page type <Freshly Allocated Page>
Total number of page: 6:      #总共分配的页数
Freshly Allocated Page: 2     #可用的数据页
Insert Buffer Bitmap: 1       #插入缓冲页
File Space Header: 1          #文件空间头
B-tree Node: 1                #数据页
File Segment inode: 1         #文件端inonde,如果是在ibdata1.ibd上会有多个inode。
Salin selepas log masuk

Perubahan ruang selepas memasukkan data

mysql> DELIMITER $$
mysql> CREATE PROCEDURE insert_user_data(num INTEGER) 
    -> BEGIN
    ->     DECLARE v_i int unsigned DEFAULT 0;
    -> set autocommit= 0;
    -> WHILE v_i < num DO
    ->    insert into user(`name`, age, gender, phone) values (CONCAT(&#39;lyn&#39;,v_i), mod(v_i,120), &#39;M&#39;, CONCAT(&#39;152&#39;,ROUND(RAND(1)*100000000)));
    ->  SET v_i = v_i+1;
    -> END WHILE;
    -> commit;
    -> END $$
Query OK, 0 rows affected (0.01 sec)
mysql> DELIMITER ;

#插入10w数据
mysql> call insert_user_data(100000);
Query OK, 0 rows affected (6.69 sec)
Salin selepas log masuk
# ls -lh user.ibd
-rw-r----- 1 mysql mysql 14M Nov 6 10:58 /data2/mysql/test/user.ibd

# python2 py_innodb_page_info.py -v /data2/mysql/test/user.ibd
page offset 00000000, page type <File Space Header>
page offset 00000001, page type <Insert Buffer Bitmap>
page offset 00000002, page type <File Segment inode>
page offset 00000003, page type <B-tree Node>, page level <0001>   #增加了一个非叶子节点,树的高度从1变为2.
........................................................
page offset 00000000, page type <Freshly Allocated Page>
Total number of page: 896:
Freshly Allocated Page: 493
Insert Buffer Bitmap: 1
File Space Header: 1
B-tree Node: 400
File Segment inode: 1
Salin selepas log masuk

Perubahan ruang selepas memadam data

mysql> select min(id),max(id),count(*) from user;
+---------+---------+----------+
| min(id) | max(id) | count(*) |
+---------+---------+----------+
|       1 |  100000 |   100000 |
+---------+---------+----------+
1 row in set (0.05 sec)
#删除50000条数据,理论上空间应该从14MB变长7MB左右。
mysql> delete from user limit 50000;
Query OK, 50000 rows affected (0.25 sec)

#数据文件大小依然是14MB,没有缩小。
# ls -lh /data2/mysql/test/user1.ibd 
-rw-r----- 1 mysql mysql 14M Nov  6 13:22 /data2/mysql/test/user.ibd

#数据页没有被回收。
# python2 py_innodb_page_info.py -v /data2/mysql/test/user.ibd
page offset 00000000, page type <File Space Header>
page offset 00000001, page type <Insert Buffer Bitmap>
page offset 00000002, page type <File Segment inode>
page offset 00000003, page type <B-tree Node>, page level <0001>
........................................................
page offset 00000000, page type <Freshly Allocated Page>
Total number of page: 896:
Freshly Allocated Page: 493
Insert Buffer Bitmap: 1
File Space Header: 1
B-tree Node: 400
File Segment inode: 1
#在MySQL内部是标记删除,
Salin selepas log masuk
mysql> use information_schema;

Database changed
mysql> SELECT A.SPACE AS TBL_SPACEID, A.TABLE_ID, A.NAME AS TABLE_NAME, FILE_FORMAT, ROW_FORMAT, SPACE_TYPE,  B.INDEX_ID , B.NAME AS INDEX_NAME, PAGE_NO, B.TYPE AS INDEX_TYPE FROM INNODB_SYS_TABLES A LEFT JOIN INNODB_SYS_INDEXES B ON A.TABLE_ID =B.TABLE_ID WHERE A.NAME = &#39;test/user1&#39;;
+-------------+----------+------------+-------------+------------+------------+----------+------------+---------+------------+
| TBL_SPACEID | TABLE_ID | TABLE_NAME | FILE_FORMAT | ROW_FORMAT | SPACE_TYPE | INDEX_ID | INDEX_NAME | PAGE_NO | INDEX_TYPE |
+-------------+----------+------------+-------------+------------+------------+----------+------------+---------+------------+
|        1283 |     1207 | test/user | Barracuda   | Dynamic    | Single     |     2236 | PRIMARY    |       3 |          3 |
+-------------+----------+------------+-------------+------------+------------+----------+------------+---------+------------+
1 row in set (0.01 sec)

PAGE_NO = 3 标识B-tree的root page是3号页,INDEX_TYPE = 3是聚集索引。 INDEX_TYPE取值如下:
0 = nonunique secondary index; 
1 = automatically generated clustered index (GEN_CLUST_INDEX); 
2 = unique nonclustered index; 
3 = clustered index; 
32 = full-text index;
#收缩空间再后进行观察
Salin selepas log masuk

Dalaman dalam MySQL tidak akan benar-benar Memadamkan ruang dan tandakannya untuk pemadaman, iaitu, tukar delflag:N kepada delflag:Y Selepas komit, ia akan dibersihkan ke dalam senarai terpaut padam Jika rekod yang lebih besar dimasukkan kali berikutnya, ruang selepas pemadaman tidak akan digunakan semula. Jika rekod yang dimasukkan Rekod kurang daripada atau sama dengan pemadaman akan digunakan semula Kandungan ini boleh dianalisis oleh alat innblock Zhishutang.

Pecahan dalam Innodb

Penjanaan pemecahan

Kami tahu bahawa data disimpan pada sistem fail dan 100% ruang fizikal yang diperuntukkan kepadanya tidak boleh digunakan sentiasa. Padam data Beberapa "lubang" akan ditinggalkan pada halaman, atau penulisan rawak (peningkatan bukan linear indeks berkelompok) akan menyebabkan pemisahan halaman akan menyebabkan ruang penggunaan halaman menjadi kurang daripada 50%. , pemadaman dan pengubahsuaian pada jadual akan menyebabkan perubahan sekunder yang sepadan, pemadaman, dan pengubahsuaian nilai indeks peringkat tahap juga akan menyebabkan beberapa "lubang" ditinggalkan pada halaman data dalam struktur indeks boleh digunakan semula, ia akhirnya akan menyebabkan sebahagian daripada ruang fizikal tidak digunakan, iaitu, pemecahan.

Pada masa yang sama, walaupun faktor isian ditetapkan kepada 100%, Innodb akan secara aktif meninggalkan 1/16 halaman halaman sebagai ruang simpanan (Tetapan innodb_fill_factor 100 daun 1/16 ruang dalam halaman indeks berkelompok percuma untuk pertumbuhan indeks masa hadapan) untuk mengelakkan limpahan baris yang disebabkan oleh kemas kini.

mysql> select table_schema,
    ->        table_name,ENGINE,
    ->        round(DATA_LENGTH/1024/1024+ INDEX_LENGTH/1024/1024) total_mb,TABLE_ROWS,
    ->        round(DATA_LENGTH/1024/1024) data_mb, round(INDEX_LENGTH/1024/1024) index_mb, round(DATA_FREE/1024/1024) free_mb, round(DATA_FREE/DATA_LENGTH*100,2) free_ratio
    -> from information_schema.TABLES where  TABLE_SCHEMA= &#39;test&#39;
    -> and TABLE_NAME= &#39;user&#39;;
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
| table_schema | table_name | ENGINE | total_mb | TABLE_ROWS | data_mb | index_mb | free_mb | free_ratio |
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
| test         | user      | InnoDB |        4 |      50000 |       4 |        0 |       6 |     149.42 |
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
1 row in set (0.00 sec)
Salin selepas log masuk

Data_free ialah bilangan bait yang tidak digunakan yang diperuntukkan, yang tidak bermakna ia adalah ruang berpecah-belah sepenuhnya.

Kitar semula serpihan

Untuk jadual InnoDB, anda boleh menggunakan arahan berikut untuk mengitar semula serpihan dan melepaskan ruang Ini ialah operasi IO yang dibaca secara rawak, yang akan memakan masa lebih lama dan juga menyekat operasi biasa pada meja. Operasi DML juga memerlukan lebih banyak ruang cakera Untuk RDS, ruang cakera mungkin menjadi penuh serta-merta, contoh akan dikunci serta-merta, dan aplikasi tidak boleh melakukan operasi DML, jadi pelaksanaan dalam persekitaran dalam talian adalah dilarang.

#执行InnoDB的碎片回收
mysql> alter table user engine=InnoDB;
Query OK, 0 rows affected (9.00 sec)
Records: 0  Duplicates: 0  Warnings: 0

##执行完之后,数据文件大小从14MB降低到10M。
# ls -lh /data2/mysql/test/user1.ibd 
-rw-r----- 1 mysql mysql 10M Nov 6 16:18 /data2/mysql/test/user.ibd
Salin selepas log masuk
mysql> select table_schema,        
    ->table_name,ENGINE,        
    ->round(DATA_LENGTH/1024/1024+ INDEX_LENGTH/1024/1024) total_mb,TABLE_ROWS,        
    ->round(DATA_LENGTH/1024/1024) data_mb, 
    ->round(INDEX_LENGTH/1024/1024) index_mb, 
    ->round(DATA_FREE/1024/1024) free_mb, 
    ->round(DATA_FREE/DATA_LENGTH*100,2) free_ratio from information_schema.TABLES where  TABLE_SCHEMA= &#39;test&#39; and TABLE_NAME= &#39;user&#39;;
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
| table_schema | table_name | ENGINE | total_mb | TABLE_ROWS | data_mb | index_mb | free_mb | free_ratio |
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
| test         | user      | InnoDB |        5 |      50000 |       5 |        0 |       2 |      44.29 |
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
1 row in set (0.00 sec)
Salin selepas log masuk

delete对SQL的影响

未删除前的SQL执行情况

#插入100W数据
mysql> call insert_user_data(1000000);
Query OK, 0 rows affected (35.99 sec)

#添加相关索引
mysql> alter table user add index idx_name(name), add index idx_phone(phone);
Query OK, 0 rows affected (6.00 sec)
Records: 0  Duplicates: 0  Warnings: 0

#表上索引统计信息
mysql> show index from user;
+-------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table | Non_unique | Key_name  | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+-------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| user  |          0 | PRIMARY   |            1 | id          | A         |      996757 |     NULL | NULL   |      | BTREE      |         |               |
| user  |          1 | idx_name  |            1 | name        | A         |      996757 |     NULL | NULL   |      | BTREE      |         |               |
| user  |          1 | idx_phone |            1 | phone       | A         |           2 |     NULL | NULL   |      | BTREE      |         |               |
+-------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
3 rows in set (0.00 sec)

#重置状态变量计数
mysql> flush status;
Query OK, 0 rows affected (0.00 sec)

#执行SQL语句
mysql> select id, age ,phone from user where name like &#39;lyn12%&#39;;
+--------+-----+-------------+
| id     | age | phone       |
+--------+-----+-------------+
|    124 |   3 | 15240540354 |
|   1231 |  30 | 15240540354 |
|  12301 |  60 | 15240540354 |
.............................
| 129998 |  37 | 15240540354 |
| 129999 |  38 | 15240540354 |
| 130000 |  39 | 15240540354 |
+--------+-----+-------------+
11111 rows in set (0.03 sec)

mysql> explain select id, age ,phone from user where name like &#39;lyn12%&#39;;
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
| id | select_type | table | type  | possible_keys | key      | key_len | ref  | rows  | Extra                 |
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
|  1 | SIMPLE      | user  | range | idx_name      | idx_name | 82      | NULL | 22226 | Using index condition |
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
1 row in set (0.00 sec)

#查看相关状态呢变量
mysql> select * from information_schema.session_status where variable_name in(&#39;Last_query_cost&#39;,&#39;Handler_read_next&#39;,&#39;Innodb_pages_read&#39;,&#39;Innodb_data_reads&#39;,&#39;Innodb_pages_read&#39;);
+-------------------+----------------+
| VARIABLE_NAME     | VARIABLE_VALUE |
+-------------------+----------------+
| HANDLER_READ_NEXT | 11111          |    #请求读的行数
| INNODB_DATA_READS | 7868409        |    #数据物理读的总数
| INNODB_PAGES_READ | 7855239        |    #逻辑读的总数
| LAST_QUERY_COST   | 10.499000      |    #SQL语句的成本COST,主要包括IO_COST和CPU_COST。
+-------------------+----------------+
4 rows in set (0.00 sec)
Salin selepas log masuk

删除后的SQL执行情况

#删除50w数据
mysql> delete from user limit 500000;
Query OK, 500000 rows affected (3.70 sec)

#分析表统计信息
mysql> analyze table user;
+-----------+---------+----------+----------+
| Table     | Op      | Msg_type | Msg_text |
+-----------+---------+----------+----------+
| test.user | analyze | status   | OK       |
+-----------+---------+----------+----------+
1 row in set (0.01 sec)

#重置状态变量计数
mysql> flush status;
Query OK, 0 rows affected (0.01 sec)

mysql> select id, age ,phone from user where name like &#39;lyn12%&#39;;
Empty set (0.05 sec)

mysql> explain select id, age ,phone from user where name like &#39;lyn12%&#39;;
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
| id | select_type | table | type  | possible_keys | key      | key_len | ref  | rows  | Extra                 |
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
|  1 | SIMPLE      | user  | range | idx_name      | idx_name | 82      | NULL | 22226 | Using index condition |
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
1 row in set (0.00 sec)

mysql> select * from information_schema.session_status where variable_name in(&#39;Last_query_cost&#39;,&#39;Handler_read_next&#39;,&#39;Innodb_pages_read&#39;,&#39;Innodb_data_reads&#39;,&#39;Innodb_pages_read&#39;);
+-------------------+----------------+
| VARIABLE_NAME     | VARIABLE_VALUE |
+-------------------+----------------+
| HANDLER_READ_NEXT | 0              |
| INNODB_DATA_READS | 7868409        |
| INNODB_PAGES_READ | 7855239        |
| LAST_QUERY_COST   | 10.499000      |
+-------------------+----------------+
4 rows in set (0.00 sec)
Salin selepas log masuk

结果统计分析

操作COST物理读次数逻辑读次数扫描行数返回行数执行时间
初始化插入100W10.49900078684097855239222261111130ms
100W随机删除50W10.4990007868409785523922226050ms

这也说明对普通的大表,想要通过delete数据来对表进行瘦身是不现实的,所以在任何时候不要用delete去删除数据,应该使用优雅的标记删除。

delete优化建议

控制业务账号权限

对于一个大的系统来说,需要根据业务特点去拆分子系统,每个子系统可以看做是一个service,例如美团APP,上面有很多服务,核心的服务有用户服务user-service,搜索服务search-service,商品product-service,位置服务location-service,价格服务price-service等。每个服务对应一个数据库,为该数据库创建单独账号,同时只授予DML权限且没有delete权限,同时禁止跨库访问。

#创建用户数据库并授权
create database mt_user charset utf8mb4;
grant USAGE, SELECT, INSERT, UPDATE ON mt_user.*  to &#39;w_user&#39;@&#39;%&#39; identified by &#39;t$W*g@gaHTGi123456&#39;;
flush privileges;
Salin selepas log masuk

delete改为标记删除

在MySQL数据库建模规范中有4个公共字段,基本上每个表必须有的,同时在create_time列要创建索引,有两方面的好处:

  • 一些查询业务场景都会有一个默认的时间段,比如7天或者一个月,都是通过create_time去过滤,走索引扫描更快。

  • 一些核心的业务表需要以T +1的方式抽取数据仓库中,比如每天晚上00:30抽取前一天的数据,都是通过create_time过滤的。

`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT &#39;主键id&#39;,
`is_deleted` tinyint(4) NOT NULL DEFAULT &#39;0&#39; COMMENT &#39;是否逻辑删除:0:未删除,1:已删除&#39;,
`create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT &#39;创建时间&#39;,
`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT &#39;修改时间&#39;

#有了删除标记,业务接口的delete操作就可以转换为update
update user set is_deleted = 1 where user_id = 1213;

#查询的时候需要带上is_deleted过滤
select id, age ,phone from user where is_deleted = 0 and name like &#39;lyn12%&#39;;
Salin selepas log masuk

数据归档方式

通用数据归档方法

#1. 创建归档表,一般在原表名后面添加_bak。
CREATE TABLE `ota_order_bak` (
  `id` bigint(11) NOT NULL AUTO_INCREMENT COMMENT &#39;主键&#39;,
  `order_id` varchar(255) DEFAULT NULL COMMENT &#39;订单id&#39;,
  `ota_id` varchar(255) DEFAULT NULL COMMENT &#39;ota&#39;,
  `check_in_date` varchar(255) DEFAULT NULL COMMENT &#39;入住日期&#39;,
  `check_out_date` varchar(255) DEFAULT NULL COMMENT &#39;离店日期&#39;,
  `hotel_id` varchar(255) DEFAULT NULL COMMENT &#39;酒店ID&#39;,
  `guest_name` varchar(255) DEFAULT NULL COMMENT &#39;顾客&#39;,
  `purcharse_time` timestamp NULL DEFAULT NULL COMMENT &#39;购买时间&#39;,
  `create_time` datetime DEFAULT NULL,
  `update_time` datetime DEFAULT NULL,
  `create_user` varchar(255) DEFAULT NULL,
  `update_user` varchar(255) DEFAULT NULL,
  `status` int(4) DEFAULT &#39;1&#39; COMMENT &#39;状态 : 1 正常 , 0 删除&#39;,
  `hotel_name` varchar(255) DEFAULT NULL,
  `price` decimal(10,0) DEFAULT NULL,
  `remark` longtext,
  PRIMARY KEY (`id`),
  KEY `IDX_order_id` (`order_id`) USING BTREE,
  KEY `hotel_name` (`hotel_name`) USING BTREE,
  KEY `ota_id` (`ota_id`) USING BTREE,
  KEY `IDX_purcharse_time` (`purcharse_time`) USING BTREE,
  KEY `IDX_create_time` (`create_time`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8
PARTITION BY RANGE (to_days(create_time)) ( 
PARTITION p201808 VALUES LESS THAN (to_days(&#39;2018-09-01&#39;)), 
PARTITION p201809 VALUES LESS THAN (to_days(&#39;2018-10-01&#39;)), 
PARTITION p201810 VALUES LESS THAN (to_days(&#39;2018-11-01&#39;)), 
PARTITION p201811 VALUES LESS THAN (to_days(&#39;2018-12-01&#39;)), 
PARTITION p201812 VALUES LESS THAN (to_days(&#39;2019-01-01&#39;)), 
PARTITION p201901 VALUES LESS THAN (to_days(&#39;2019-02-01&#39;)), 
PARTITION p201902 VALUES LESS THAN (to_days(&#39;2019-03-01&#39;)), 
PARTITION p201903 VALUES LESS THAN (to_days(&#39;2019-04-01&#39;)), 
PARTITION p201904 VALUES LESS THAN (to_days(&#39;2019-05-01&#39;)), 
PARTITION p201905 VALUES LESS THAN (to_days(&#39;2019-06-01&#39;)), 
PARTITION p201906 VALUES LESS THAN (to_days(&#39;2019-07-01&#39;)), 
PARTITION p201907 VALUES LESS THAN (to_days(&#39;2019-08-01&#39;)), 
PARTITION p201908 VALUES LESS THAN (to_days(&#39;2019-09-01&#39;)), 
PARTITION p201909 VALUES LESS THAN (to_days(&#39;2019-10-01&#39;)), 
PARTITION p201910 VALUES LESS THAN (to_days(&#39;2019-11-01&#39;)), 
PARTITION p201911 VALUES LESS THAN (to_days(&#39;2019-12-01&#39;)), 
PARTITION p201912 VALUES LESS THAN (to_days(&#39;2020-01-01&#39;)));

#2. 插入原表中无效的数据(需要跟开发同学确认数据保留范围)
create table tbl_p201808 as select * from ota_order where create_time between &#39;2018-08-01 00:00:00&#39; and &#39;2018-08-31 23:59:59&#39;;

#3. 跟归档表分区做分区交换
alter table ota_order_bak exchange partition p201808 with table tbl_p201808; 

#4. 删除原表中已经规范的数据
delete from ota_order where create_time between &#39;2018-08-01 00:00:00&#39; and &#39;2018-08-31 23:59:59&#39; limit 3000;
Salin selepas log masuk

优化后的归档方式

#1. 创建中间表
CREATE TABLE `ota_order_2020` (........) ENGINE=InnoDB DEFAULT CHARSET=utf8
PARTITION BY RANGE (to_days(create_time)) ( 
PARTITION p201808 VALUES LESS THAN (to_days(&#39;2018-09-01&#39;)), 
PARTITION p201809 VALUES LESS THAN (to_days(&#39;2018-10-01&#39;)), 
PARTITION p201810 VALUES LESS THAN (to_days(&#39;2018-11-01&#39;)), 
PARTITION p201811 VALUES LESS THAN (to_days(&#39;2018-12-01&#39;)), 
PARTITION p201812 VALUES LESS THAN (to_days(&#39;2019-01-01&#39;)), 
PARTITION p201901 VALUES LESS THAN (to_days(&#39;2019-02-01&#39;)), 
PARTITION p201902 VALUES LESS THAN (to_days(&#39;2019-03-01&#39;)), 
PARTITION p201903 VALUES LESS THAN (to_days(&#39;2019-04-01&#39;)), 
PARTITION p201904 VALUES LESS THAN (to_days(&#39;2019-05-01&#39;)), 
PARTITION p201905 VALUES LESS THAN (to_days(&#39;2019-06-01&#39;)), 
PARTITION p201906 VALUES LESS THAN (to_days(&#39;2019-07-01&#39;)), 
PARTITION p201907 VALUES LESS THAN (to_days(&#39;2019-08-01&#39;)), 
PARTITION p201908 VALUES LESS THAN (to_days(&#39;2019-09-01&#39;)), 
PARTITION p201909 VALUES LESS THAN (to_days(&#39;2019-10-01&#39;)), 
PARTITION p201910 VALUES LESS THAN (to_days(&#39;2019-11-01&#39;)), 
PARTITION p201911 VALUES LESS THAN (to_days(&#39;2019-12-01&#39;)), 
PARTITION p201912 VALUES LESS THAN (to_days(&#39;2020-01-01&#39;)));

#2. 插入原表中有效的数据,如果数据量在100W左右可以在业务低峰期直接插入,如果比较大,建议采用dataX来做,可以控制频率和大小,之前我这边用Go封装了dataX可以实现自动生成json文件,自定义大小去执行。
insert into ota_order_2020 select * from ota_order where create_time between &#39;2020-08-01 00:00:00&#39; and &#39;2020-08-31 23:59:59&#39;;

#3. 表重命名
alter table ota_order rename to ota_order_bak;  
alter table ota_order_2020 rename to ota_order;
#4. 插入差异数据
insert into ota_order select * from ota_order_bak a where not exists (select 1 from ota_order b where a.id = b.id);
#5. ota_order_bak改造成分区表,如果表比较大不建议直接改造,可以先创建好分区表,通过dataX把导入进去即可。

#6. 后续的归档方法
#创建中间普遍表
create table ota_order_mid like ota_order;
#交换原表无效数据分区到普通表
alter table ota_order exchange partition p201808 with table ota_order_mid; 
##交换普通表数据到归档表的相应分区
alter table ota_order_bak exchange partition p201808 with table ota_order_mid;
Salin selepas log masuk

这样原表和归档表都是按月的分区表,只需要创建一个中间普通表,在业务低峰期做两次分区交换,既可以删除无效数据,又能回收空,而且没有空间碎片,不会影响表上的索引及SQL的执行计划。

总结

通过从InnoDB存储空间分布,delete对性能的影响可以看到,delete物理删除既不能释放磁盘空间,而且会产生大量的碎片,导致索引频繁分裂,影响SQL执行计划的稳定性;

同时在碎片回收时,会耗用大量的CPU,磁盘空间,影响表上正常的DML操作。

在业务代码层面,应该做逻辑标记删除,避免物理删除;为了实现数据归档需求,可以用采用MySQL分区表特性来实现,都是DDL操作,没有碎片产生。

另外一个比较好的方案采用Clickhouse,对有生命周期的数据表可以使用Clickhouse存储,利用其TTL特性实现无效数据自动清理。

相关推荐:《mysql教程

Atas ialah kandungan terperinci Mengapa mysql tidak menggunakan delete semasa memadam data?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Label berkaitan:
sumber:csdn.net
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan