


Penjelasan terperinci tentang penciptaan tatasusunan dalam tutorial Python NumPy
[Pengesyoran berkaitan: Tutorial video Python3 ]
Gunakan Senarai untuk mencipta tatasusunan
Array digunakan dalam Berbilang nilai disimpan dalam pembolehubah. Python tidak mempunyai sokongan terbina dalam untuk tatasusunan, tetapi senarai Python boleh digunakan sebaliknya.
Contoh:
arr = [1, 2, 3, 4, 5] arr1 = ["geeks", "for", "geeks"]
# 用于创建数组的 Python 程序 # 使用列表创建数组 arr=[1, 2, 3, 4, 5] for i in arr: print(i)
Output:
1
2
3
4
5
Gunakan fungsi tatasusunan untuk mencipta tatasusunan
fungsi tatasusunan(jenis data, senarai nilai) digunakan untuk buat tatasusunan , jenis data dan senarai nilai ditentukan dalam parameternya.
Contoh:
# 演示 array() 工作的 Python 代码 # 为数组操作导入“array” import array # 用数组值初始化数组 # 用有符号整数初始化数组 arr = array.array('i', [1, 2, 3]) # 打印原始数组 print ("The new created array is : ",end="") for i in range (0,3): print (arr[i], end=" ") print ("\r")
Output:
Tatasusunan baharu yang dicipta ialah : 1 2 3 1 5
Menggunakan kaedah numpy untuk mencipta tatasusunan
NumPy menyediakan beberapa fungsi untuk mencipta tatasusunan dengan kandungan pemegang tempat awal. Ini meminimumkan keperluan untuk mengembangkan tatasusunan, yang merupakan operasi yang mahal. Contohnya: np.zeros, np.empty, dsb.
numpy.empty(shape, dtype = float, order = 'C'): Mengembalikan tatasusunan baharu bagi bentuk dan jenis yang diberikan, dengan nilai rawak.
# 说明 numpy.empty 方法的 Python 代码 import numpy as geek b = geek.empty(2, dtype = int) print("Matrix b : \n", b) a = geek.empty([2, 2], dtype = int) print("\nMatrix a : \n", a) c = geek.empty([3, 3]) print("\nMatrix c : \n", c)
Output:
Matriks b :
[ 0 1079574528]
Matriks a :
[[ 0 0]
[0 0]]
Matriks a :
[[ 0. 0. 0.]
[ 0. 0. 0.]
[ 0. 0 . 0.]]
numpy.zeros(shape, dtype = None, order = 'C'): Mengembalikan tatasusunan baharu bagi bentuk dan jenis yang diberikan, dengan sifar .
# 说明 numpy.zeros 方法的 Python 程序 import numpy as geek b = geek.zeros(2, dtype = int) print("Matrix b : \n", b) a = geek.zeros([2, 2], dtype = int) print("\nMatrix a : \n", a) c = geek.zeros([3, 3]) print("\nMatrix c : \n", c)
Output:
Matriks b :
[0 0]
Matriks a :
[[ 0 0]
[0 0]]
Matriks c :
[[ 0. 0. 0.]
[ 0. 0. 0.]
[ 0. 0 . 0.]]
Bentuk Semula Tatasusunan
Kita boleh menggunakan kaedah reshape
untuk membentuk semula tatasusunan. Pertimbangkan tatasusunan bentuk (a1, a2, a3, ..., aN). Kita boleh membentuk semula dan menukarnya kepada tatasusunan bentuk lain (b1, b2, b3, ..., bM).
Satu-satunya syarat yang diperlukan ialah: a1 x a2 x a3 … x aN = b1 x b2 x b3 … x bM . (iaitu saiz asal tatasusunan kekal tidak berubah.)
numpy.reshape(array, shape, order = 'C'): Shape the array tanpa mengubah data array .
# 说明 numpy.reshape() 方法的 Python 程序 import numpy as geek array = geek.arange(8) print("Original array : \n", array) # 具有 2 行和 4 列的形状数组 array = geek.arange(8).reshape(2, 4) print("\narray reshaped with 2 rows and 4 columns : \n", array) # 具有 2 行和 4 列的形状数组 array = geek.arange(8).reshape(4 ,2) print("\narray reshaped with 2 rows and 4 columns : \n", array) # 构造 3D 数组 array = geek.arange(8).reshape(2, 2, 2) print("\nOriginal array reshaped to 3D : \n", array)
Output:
Susun atur asal:
[0 1 2 3 4 5 6 7]
tatasusunan dibentuk semula dengan 2 baris dan 4 lajur :
[[0 1 2 3]
[4 5 6 7]]
tatasusunan dibentuk semula dengan 2 baris dan 4 lajur :
[[0 1]
[2 3]
[4 5]
[6 7]]
Susun atur asal dibentuk semula kepada 3D :
[[[0 1]
[2 3] ]
[[4 5]
[6 7]]]
Untuk mencipta urutan nombor, NumPy menyediakan fungsi seperti julat yang mengembalikan tatasusunan dan bukannya senarai.
arange Mengembalikan nilai teragih seragam dalam selang waktu tertentu. Panjang langkah ditentukan.
linspace Mengembalikan nilai yang diedarkan secara seragam dalam selang waktu tertentu. Elemen dengan nombor _ dikembalikan.
arange([start,] stop[, step,][, dtype]): Mengembalikan tatasusunan dengan elemen jarak sekata berdasarkan selang. Selang yang disebutkan adalah separuh terbuka, iaitu [mula, berhenti)
# 说明 numpy.arange 方法的 Python 编程 import numpy as geek print("A\n", geek.arange(4).reshape(2, 2), "\n") print("A\n", geek.arange(4, 10), "\n") print("A\n", geek.arange(4, 20, 3), "\n")
Output:
A
[[0 1]
[2 3]]
A
[4 5 6 7 8 9]
A
[ 4 7 10 13 16 19]
numpy.linspace(start, stop, num = 50, endpoint = True, retstep = False, dtype = None): Mengembalikan ruang angka secara seragam dalam selang waktu. Seperti arange tetapi bukannya langkah ia menggunakan nombor sampel.
# 说明 numpy.linspace 方法的 Python 编程 import numpy as geek # 重新设置为 True print("B\n", geek.linspace(2.0, 3.0, num=5, retstep=True), "\n") # 长期评估 sin() x = geek.linspace(0, 2, 10) print("A\n", geek.sin(x))
Output:
Susun atur rataKita boleh menggunakan kaedah rata Meruntuhkan salinan tatasusunan menjadi satu dimensi. Ia menerima parameter pesanan. Nilai lalai ialah "C" (untuk susunan baris-utama). Gunakan "F" untuk susunan utama lajur.B
(tatasusunan([ 2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)
A
[ 0. 0.9786557 0.90929743]
numpy.ndarray.flatten(order = 'C') : Mengembalikan salinan tatasusunan yang diratakan kepada satu dimensi.
# 说明 numpy.flatten() 方法的 Python 程序 import numpy as geek array = geek.array([[1, 2], [3, 4]]) # 使用扁平化方法 array.flatten() print(array) #使用扁平化方法 array.flatten('F') print(array)
Output:
[1, 2, 3, 4]
[1, 3, 2, 4]
Cara membuat tatasusunan dalam Numpy
功能 | 描述 |
---|---|
empty() | 返回给定形状和类型的新数组,而不初始化条目 |
empty_like() | 返回与给定数组具有相同形状和类型的新数组 |
eye() | 返回一个二维数组,其中对角线为 1,其他位置为 0。 |
identity() | 返回标识数组 |
ones() | 返回一个给定形状和类型的新数组,用一个填充 |
one_like() | 返回与给定数组具有相同形状和类型的数组 |
zeros() | 返回给定形状和类型的新数组,用零填充 |
zeros_like() | 返回与给定数组具有相同形状和类型的零数组 |
full_like() | 返回与给定数组具有相同形状和类型的完整数组。 |
array() | 创建一个数组 |
asarray() | 将输入转换为数组 |
asanyarray() | 将输入转换为 ndarray,但通过 ndarray 子类 |
ascontiguousarray() | 返回内存中的连续数组(C 顺序) |
asmatrix() | 将输入解释为矩阵 |
copy() | 返回给定对象的数组副本 |
frombuffer() | 将缓冲区解释为一维数组 |
fromfile() | 从文本或二进制文件中的数据构造数组 |
fromfunction() | 通过在每个坐标上执行函数来构造数组 |
fromiter() | 从可迭代对象创建一个新的一维数组 |
fromstring() | 从字符串中的文本数据初始化的新一维数组 |
loadtxt() | 从文本文件加载数据 |
arange() | 在给定间隔内返回均匀间隔的值 |
linspace() | 在指定的时间间隔内返回均匀分布的数字 |
logspace() | 返回在对数刻度上均匀分布的数字 |
geomspace() | 返回在对数尺度上均匀分布的数字(几何级数) |
meshgrid() | 从坐标向量返回坐标矩阵 |
mgrid() | nd_grid 实例,它返回一个密集的多维“网格” |
ogrid() | nd_grid 实例,它返回一个开放的多维“meshgrid” |
diag() | 提取对角线或构造对角线数组 |
diagflat() | 创建一个二维数组,将扁平化输入作为对角线 |
tri() | 一个数组,在给定的对角线处和下方都有一个,在其他地方有零 |
tril() | 数组的下三角形 |
triu() | 数组的上三角形 |
vander() | 生成范德蒙德矩阵 |
mat() | 将输入解释为矩阵 |
bmat() | 从字符串、嵌套序列或数组构建矩阵对象 |
【Cadangan berkaitan: Tutorial video Python3 】
Atas ialah kandungan terperinci Penjelasan terperinci tentang penciptaan tatasusunan dalam tutorial Python NumPy. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



MySQL mempunyai versi komuniti percuma dan versi perusahaan berbayar. Versi komuniti boleh digunakan dan diubahsuai secara percuma, tetapi sokongannya terhad dan sesuai untuk aplikasi dengan keperluan kestabilan yang rendah dan keupayaan teknikal yang kuat. Edisi Enterprise menyediakan sokongan komersil yang komprehensif untuk aplikasi yang memerlukan pangkalan data yang stabil, boleh dipercayai, berprestasi tinggi dan bersedia membayar sokongan. Faktor yang dipertimbangkan apabila memilih versi termasuk kritikal aplikasi, belanjawan, dan kemahiran teknikal. Tidak ada pilihan yang sempurna, hanya pilihan yang paling sesuai, dan anda perlu memilih dengan teliti mengikut keadaan tertentu.

Hadidb: Pangkalan data Python yang ringan, tinggi, Hadidb (Hadidb) adalah pangkalan data ringan yang ditulis dalam Python, dengan tahap skalabilitas yang tinggi. Pasang HadIdb menggunakan pemasangan PIP: Pengurusan Pengguna PipInstallHadidB Buat Pengguna: CreateUser () Kaedah untuk membuat pengguna baru. Kaedah pengesahan () mengesahkan identiti pengguna. dariHadidb.OperationImportuserer_Obj = user ("admin", "admin") user_obj.

Tidak mustahil untuk melihat kata laluan MongoDB secara langsung melalui Navicat kerana ia disimpan sebagai nilai hash. Cara mendapatkan kata laluan yang hilang: 1. Tetapkan semula kata laluan; 2. Periksa fail konfigurasi (mungkin mengandungi nilai hash); 3. Semak Kod (boleh kata laluan Hardcode).

MySQL Workbench boleh menyambung ke MariaDB, dengan syarat bahawa konfigurasi adalah betul. Mula -mula pilih "MariaDB" sebagai jenis penyambung. Dalam konfigurasi sambungan, tetapkan host, port, pengguna, kata laluan, dan pangkalan data dengan betul. Apabila menguji sambungan, periksa bahawa perkhidmatan MariaDB dimulakan, sama ada nama pengguna dan kata laluan betul, sama ada nombor port betul, sama ada firewall membenarkan sambungan, dan sama ada pangkalan data itu wujud. Dalam penggunaan lanjutan, gunakan teknologi penyatuan sambungan untuk mengoptimumkan prestasi. Kesilapan biasa termasuk kebenaran yang tidak mencukupi, masalah sambungan rangkaian, dan lain -lain. Apabila kesilapan debugging, dengan teliti menganalisis maklumat ralat dan gunakan alat penyahpepijatan. Mengoptimumkan konfigurasi rangkaian dapat meningkatkan prestasi

Sambungan MySQL mungkin disebabkan oleh sebab -sebab berikut: Perkhidmatan MySQL tidak dimulakan, firewall memintas sambungan, nombor port tidak betul, nama pengguna atau kata laluan tidak betul, alamat pendengaran di my.cnf dikonfigurasi dengan tidak wajar, dan lain -lain. Langkah -langkah penyelesaian masalah termasuk: 1. 2. Laraskan tetapan firewall untuk membolehkan MySQL mendengar port 3306; 3. Sahkan bahawa nombor port adalah konsisten dengan nombor port sebenar; 4. Periksa sama ada nama pengguna dan kata laluan betul; 5. Pastikan tetapan alamat mengikat di my.cnf betul.

MySQL boleh berjalan tanpa sambungan rangkaian untuk penyimpanan dan pengurusan data asas. Walau bagaimanapun, sambungan rangkaian diperlukan untuk interaksi dengan sistem lain, akses jauh, atau menggunakan ciri -ciri canggih seperti replikasi dan clustering. Di samping itu, langkah -langkah keselamatan (seperti firewall), pengoptimuman prestasi (pilih sambungan rangkaian yang betul), dan sandaran data adalah penting untuk menyambung ke Internet.

Panduan Pengoptimuman Prestasi Pangkalan Data MySQL Dalam aplikasi yang berintensifkan sumber, pangkalan data MySQL memainkan peranan penting dan bertanggungjawab untuk menguruskan urus niaga besar-besaran. Walau bagaimanapun, apabila skala aplikasi berkembang, kemunculan prestasi pangkalan data sering menjadi kekangan. Artikel ini akan meneroka satu siri strategi pengoptimuman prestasi MySQL yang berkesan untuk memastikan aplikasi anda tetap cekap dan responsif di bawah beban tinggi. Kami akan menggabungkan kes-kes sebenar untuk menerangkan teknologi utama yang mendalam seperti pengindeksan, pengoptimuman pertanyaan, reka bentuk pangkalan data dan caching. 1. Reka bentuk seni bina pangkalan data dan seni bina pangkalan data yang dioptimumkan adalah asas pengoptimuman prestasi MySQL. Berikut adalah beberapa prinsip teras: Memilih jenis data yang betul dan memilih jenis data terkecil yang memenuhi keperluan bukan sahaja dapat menjimatkan ruang penyimpanan, tetapi juga meningkatkan kelajuan pemprosesan data.

Sebagai profesional data, anda perlu memproses sejumlah besar data dari pelbagai sumber. Ini boleh menimbulkan cabaran kepada pengurusan data dan analisis. Nasib baik, dua perkhidmatan AWS dapat membantu: AWS Glue dan Amazon Athena.
