Rumah > pembangunan bahagian belakang > Golang > Adakah bahasa go perlu disusun?

Adakah bahasa go perlu disusun?

青灯夜游
Lepaskan: 2022-12-01 19:06:35
asal
7223 orang telah melayarinya

Bahasa Go perlu disusun. Bahasa Go ialah bahasa statik tersusun Ia adalah bahasa pengaturcaraan yang perlu disusun untuk dijalankan Dengan kata lain, sebelum program bahasa Go boleh dijalankan, pengkompil perlu menjana kod mesin binari (fail boleh laku binari). fail binari boleh dijalankan pada mesin sasaran.

Adakah bahasa go perlu disusun?

Persekitaran pengendalian tutorial ini: sistem Windows 7, GO versi 1.18, komputer Dell G3.

Bahasa Go ialah bahasa pengaturcaraan yang memerlukan kompilasi untuk dijalankan Ini bermakna kod tersebut perlu dijana oleh pengkompil untuk menjana kod mesin binari sebelum dijalankan, dan kemudian fail binari boleh dijalankan pada mesin sasaran. .

Ringkasnya, bahasa Go ialah bahasa statik terkumpul (sama seperti bahasa C), jadi sebelum menjalankan atur cara bahasa Go, ia mesti disusun ke dalam fail boleh laku binari.

Jika kita ingin memahami prinsip pelaksanaan bahasa Go, memahami proses penyusunannya adalah sesuatu yang tidak boleh dilewati. Mari kita lihat cara bahasa Go melengkapkan kompilasi.

Pengetahuan awal

Jika anda ingin mempunyai pemahaman yang mendalam tentang proses penyusunan bahasa Go, anda perlu memahami beberapa istilah dan pengetahuan profesional yang terlibat dalam proses penyusunan terlebih dahulu. Pengetahuan ini sebenarnya sukar untuk digunakan dalam kerja dan pembelajaran harian kita, tetapi ia masih sangat penting untuk memahami proses dan prinsip penyusunan.

1) Pokok Sintaks Abstrak

Dalam sains komputer, Pokok Sintaks Abstrak (AST), atau pokok Sintaks untuk ringkasnya, ialah perwakilan abstrak tatabahasa struktur kod sumber. Ia mewakili struktur tatabahasa bahasa pengaturcaraan dalam bentuk pokok, dan setiap nod pada pokok mewakili struktur dalam kod sumber.

Sebab nahu dikatakan "abstrak" adalah kerana tatabahasa di sini tidak mewakili setiap butiran yang muncul dalam tatabahasa sebenar. Contohnya, kurungan bersarang tersirat dalam struktur pokok dan tidak diwakili sebagai nod. Pernyataan penghakiman bersyarat seperti if else boleh diwakili oleh nod dengan dua cabang.

Ambil ungkapan aritmetik 1 3*(4-1) 2 sebagai contoh Pokok sintaks abstrak yang boleh dihuraikan adalah seperti yang ditunjukkan di bawah:

Adakah bahasa go perlu disusun?
Rajah: Pokok sintaks abstrak

Pokok sintaks abstrak boleh digunakan dalam banyak bidang, seperti penyemak imbas, editor pintar dan penyusun.

2) Tugasan tunggal statik

Dalam reka bentuk pengkompil, borang tugasan tunggal statik (borang tugasan tunggal statik, biasanya disingkatkan sebagai borang SSA atau SSA ) ialah atribut perwakilan perantaraan (IR), yang memerlukan setiap pembolehubah diperuntukkan sekali sahaja, dan pembolehubah perlu ditakrifkan sebelum digunakan. Dalam amalan, kami biasanya menggunakan penambahan subskrip untuk mencapai ciri yang setiap pembolehubah hanya boleh diberikan sekali Berikut ialah contoh mudah dengan kod berikut:

x := 1
x := 2
y := x
Salin selepas log masuk

Seperti yang kita ketahui daripada penerangan di atas, Tugasan. tingkah laku dalam baris pertama tidak diperlukan kerana x ditetapkan dua kali dalam baris kedua dan digunakan dalam baris ketiga Di bawah SSA, ia akan menjadi bentuk berikut:

x1 := 1
x2 := 2
y1 := x2
Salin selepas log masuk

Daripada Menggunakan kod perantaraan SSA. , kita dapat melihat dengan jelas bahawa nilai pembolehubah y1 sama sekali tidak mempunyai hubungan dengan x1, jadi langkah pertama boleh ditinggalkan apabila menjana kod mesin, yang boleh mengurangkan bilangan arahan yang perlu dilaksanakan untuk pengoptimuman kod ini.

Menurut pengenalan Wikipedia kepada SSA, menggunakan ciri SSA dalam kod perantaraan boleh mencapai pengoptimuman berikut untuk keseluruhan program:

  • Perambatan malar (propagasi berterusan)
  • perambatan julat nilai (perambatan julat nilai)
  • perambatan pemalar bersyarat jarang (perambatan pemalar bersyarat jarang)
  • Hapuskan penghapusan kod mati)
  • penomboran nilai global < . ialah pengoptimuman kod, ia adalah bahagian belakang pengkompil (terutamanya bertanggungjawab untuk pengoptimuman dan penjanaan kod sasaran). Sudah tentu, sebagai tambahan kepada SSA, terdapat banyak kaedah pengoptimuman kod perantaraan dalam bidang penyusunan kod Mengoptimumkan kod yang dihasilkan oleh pengkompil adalah medan yang sangat lama dan kompleks, yang tidak akan diperkenalkan di sini.
  • 3) Senibina Set Arahan
  • Prasyarat terakhir untuk diperkenalkan ialah seni bina set arahan, Senibina Set Arahan (ISA) , juga dikenali sebagai set arahan atau sistem set arahan, adalah sebahagian daripada seni bina komputer yang berkaitan dengan pengaturcaraan, termasuk jenis data asas, set arahan, daftar, mod pengalamatan, sistem storan, gangguan, pengendalian pengecualian, dan I/O luaran. Seni bina set arahan terdiri daripada satu siri opcode (bahasa mesin), arahan asas yang dilaksanakan oleh pemproses tertentu.

  • Jenis seni bina set arahan yang biasa adalah seperti berikut:


Pengkomputeran Set Arahan Kompleks (CISC)

Pengkomputeran Set Arahan Terkurang ( singkatannya RISC); 🎜>Pengkomputeran Arahan Selari Secara Eksplisit (pendek kata EPIC);

Pemproses (CPU) yang berbeza menggunakan bahasa mesin yang sangat berbeza, jadi jika program kami ingin dijalankan pada mesin yang berbeza, kami perlu menyusun kod sumber ke dalam bahasa mesin yang berbeza.

  • Prinsip Penyusunan
  • Kod sumber pengkompil bahasa Go berada dalam direktori cmd/compile Fail dalam direktori bersama-sama membentuk bahasa Go pengkompil. Orang yang telah mempelajari prinsip kompilasi mungkin pernah mendengar tentang bahagian hadapan dan bahagian belakang pengkompil secara amnya bertanggungjawab untuk analisis leksikal, analisis sintaks, semakan jenis dan penjanaan kod perantaraan. manakala bahagian belakang pengkompil bertanggungjawab terutamanya untuk kod sasaran dan pengoptimuman, iaitu, menterjemah kod perantaraan ke dalam kod mesin yang boleh dijalankan oleh mesin sasaran.
Pengkompil Go boleh dibahagikan secara logik kepada empat peringkat: analisis leksikal dan sintaksis, pemeriksaan jenis dan penukaran AST, penjanaan umum SSA dan penjanaan kod mesin akhir kerja yang dilakukan dalam empat peringkat ini masing-masing.



1) Analisis leksikal dan sintaksis

Semua proses penyusunan sebenarnya bermula daripada menghurai fail sumber kod tersebut Peranan analisis leksikal adalah untuk menghuraikan fail Kod sumber, ia menukar urutan rentetan dalam fail ke dalam urutan Token untuk memudahkan pemprosesan dan analisis seterusnya Kami biasanya memanggil program yang melakukan analisis leksikal sebagai lexer (lexer).

Input analisis tatabahasa ialah output jujukan Token oleh penganalisis leksikal ini akan dihuraikan oleh penganalisis tatabahasa mengikut urutan Proses penghuraian tatabahasa adalah untuk menukar Token yang dihasilkan oleh analisis leksikal tatabahasa yang ditakrifkan oleh bahasa ( Tatabahasa) spesifikasi bawah ke atas atau atas ke bawah, setiap fail kod sumber Go akhirnya akan diringkaskan ke dalam struktur SourceFile:

SourceFile = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" }
Salin selepas log masuk

标准的 Golang 语法解析器使用的就是 LALR(1) 的文法,语法解析的结果其实就是上面介绍过的抽象语法树(AST),每一个 AST 都对应着一个单独的Go语言文件,这个抽象语法树中包括当前文件属于的包名、定义的常量、结构体和函数等。

如果在语法解析的过程中发生了任何语法错误,都会被语法解析器发现并将消息打印到标准输出上,整个编译过程也会随着错误的出现而被中止。

2) 类型检查

当拿到一组文件的抽象语法树 AST 之后,Go语言的编译器会对语法树中定义和使用的类型进行检查,类型检查分别会按照顺序对不同类型的节点进行验证,按照以下的顺序进行处理:

  • 常量、类型和函数名及类型;
  • 变量的赋值和初始化;
  • 函数和闭包的主体;
  • 哈希键值对的类型;
  • 导入函数体;
  • 外部的声明;

通过对每一棵抽象节点树的遍历,我们在每一个节点上都会对当前子树的类型进行验证保证当前节点上不会出现类型错误的问题,所有的类型错误和不匹配都会在这一个阶段被发现和暴露出来。

类型检查的阶段不止会对树状结构的节点进行验证,同时也会对一些内建的函数进行展开和改写,例如 make 关键字在这个阶段会根据子树的结构被替换成 makeslice 或者 makechan 等函数。

其实类型检查不止对类型进行了验证工作,还对 AST 进行了改写以及处理Go语言内置的关键字,所以,这一过程在整个编译流程中是非常重要的,没有这个步骤很多关键字其实就没有办法工作。【相关推荐:Go视频教程

3) 中间代码生成

当我们将源文件转换成了抽象语法树,对整个语法树的语法进行解析并进行类型检查之后,就可以认为当前文件中的代码基本上不存在无法编译或者语法错误的问题了,Go语言的编译器就会将输入的 AST 转换成中间代码。

Go语言编译器的中间代码使用了 SSA(Static Single Assignment Form) 的特性,如果我们在中间代码生成的过程中使用这种特性,就能够比较容易的分析出代码中的无用变量和片段并对代码进行优化。

在类型检查之后,就会通过一个名为 compileFunctions 的函数开始对整个Go语言项目中的全部函数进行编译,这些函数会在一个编译队列中等待几个后端工作协程的消费,这些 Goroutine 会将所有函数对应的 AST 转换成使用 SSA 特性的中间代码。

4) 机器码生成

Go语言源代码的 cmd/compile/internal 目录中包含了非常多机器码生成相关的包,不同类型的 CPU 分别使用了不同的包进行生成 amd64、arm、arm64、mips、mips64、ppc64、s390x、x86 和 wasm,也就是说Go语言能够在几乎全部常见的 CPU 指令集类型上运行。

编译器入口

Go语言的编译器入口是 src/cmd/compile/internal/gc 包中的 main.go 文件,这个 600 多行的 Main 函数就是Go语言编译器的主程序,这个函数会先获取命令行传入的参数并更新编译的选项和配置,随后就会开始运行 parseFiles 函数对输入的所有文件进行词法与语法分析得到文件对应的抽象语法树:

func Main(archInit func(*Arch)) {
    // ...
    lines := parseFiles(flag.Args())
Salin selepas log masuk

接下来就会分九个阶段对抽象语法树进行更新和编译,就像我们在上面介绍的,整个过程会经历类型检查、SSA 中间代码生成以及机器码生成三个部分:

  • 检查常量、类型和函数的类型;
  • 处理变量的赋值;
  • 对函数的主体进行类型检查;
  • 决定如何捕获变量;
  • 检查内联函数的类型;
  • 进行逃逸分析;
  • 将闭包的主体转换成引用的捕获变量;
  • 编译顶层函数;
  • 检查外部依赖的声明;

了解了剩下的编译过程之后,我们重新回到词法和语法分析后的具体流程,在这里编译器会对生成语法树中的节点执行类型检查,除了常量、类型和函数这些顶层声明之外,它还会对变量的赋值语句、函数主体等结构进行检查:

for i := 0; i < len(xtop); i++ {
    n := xtop[i]
    if op := n.Op; op != ODCL && op != OAS && op != OAS2 && (op != ODCLTYPE || !n.Left.Name.Param.Alias) {
        xtop[i] = typecheck(n, ctxStmt)
    }
}

for i := 0; i < len(xtop); i++ {
    n := xtop[i]
    if op := n.Op; op == ODCL || op == OAS || op == OAS2 || op == ODCLTYPE && n.Left.Name.Param.Alias {
        xtop[i] = typecheck(n, ctxStmt)
    }
}

for i := 0; i < len(xtop); i++ {
    n := xtop[i]
    if op := n.Op; op == ODCLFUNC || op == OCLOSURE {
        typecheckslice(Curfn.Nbody.Slice(), ctxStmt)
    }
}

checkMapKeys()

for _, n := range xtop {
    if n.Op == ODCLFUNC && n.Func.Closure != nil {
        capturevars(n)
    }
}

escapes(xtop)

for _, n := range xtop {
    if n.Op == ODCLFUNC && n.Func.Closure != nil {
        transformclosure(n)
    }
}
Salin selepas log masuk

类型检查会对传入节点的子节点进行遍历,这个过程会对 make 等关键字进行展开和重写,类型检查结束之后并没有输出新的数据结构,只是改变了语法树中的一些节点,同时这个过程的结束也意味着源代码中已经不存在语法错误和类型错误,中间代码和机器码也都可以正常的生成了。

    initssaconfig()

    peekitabs()

    for i := 0; i < len(xtop); i++ {
        n := xtop[i]
        if n.Op == ODCLFUNC {
            funccompile(n)
        }
    }

    compileFunctions()

    for i, n := range externdcl {
        if n.Op == ONAME {
            externdcl[i] = typecheck(externdcl[i], ctxExpr)
        }
    }

    checkMapKeys()
}
Salin selepas log masuk

在主程序运行的最后,会将顶层的函数编译成中间代码并根据目标的 CPU 架构生成机器码,不过这里其实也可能会再次对外部依赖进行类型检查以验证正确性。

总结

Go语言的编译过程其实是非常有趣并且值得学习的,通过对Go语言四个编译阶段的分析和对编译器主函数的梳理,我们能够对 Golang 的实现有一些基本的理解,掌握编译的过程之后,Go语言对于我们来讲也不再那么神秘,所以学习其编译原理的过程还是非常有必要的。

更多编程相关知识,请访问:编程视频!!

Atas ialah kandungan terperinci Adakah bahasa go perlu disusun?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Label berkaitan:
sumber:php.cn
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan