


Perbandingan pengoptimuman hiperparameter: carian grid, carian rawak dan pengoptimuman Bayesian
Artikel ini akan memperkenalkan secara terperinci kaedah pengoptimuman hiperparameter yang paling biasa digunakan untuk meningkatkan hasil pembelajaran mesin.
Penterjemah |. Zhu Xianzhong
Pengulas |. orang fikir ialah Penyelesaiannya ialah menambah lebih banyak data latihan. Data tambahan selalunya membantu (kecuali dalam keadaan tertentu), tetapi menjana data berkualiti tinggi boleh menjadi sangat mahal. Pengoptimuman hiperparameter menjimatkan masa dan sumber kami dengan menggunakan data sedia ada untuk mendapatkan prestasi model terbaik.
Seperti namanya, pengoptimuman hiperparameter ialah proses menentukan gabungan hiperparameter terbaik untuk model pembelajaran mesin untuk memenuhi fungsi pengoptimuman (iaitu, memaksimumkan prestasi model berdasarkan set data yang dikaji) . Dalam erti kata lain, setiap model menyediakan berbilang "butang" pilihan yang boleh kami ubah sehingga kami mencapai gabungan hiperparameter yang optimum untuk model kami. Beberapa contoh parameter yang boleh kita ubah semasa pengoptimuman hiperparameter boleh menjadi kadar pembelajaran, seni bina rangkaian saraf (cth., bilangan lapisan tersembunyi), regularisasi, dsb.
Dalam artikel ini, kami akan memperkenalkan secara konseptual tiga kaedah pengoptimuman hiperparameter yang paling biasa, iaitu carian grid, carian rawak dan pengoptimuman Bayesian, dan kemudian melaksanakannya satu demi satu.
Saya akan menyediakan jadual perbandingan peringkat tinggi pada permulaan artikel untuk rujukan pembaca, dan kemudian meneroka, menerangkan dan melaksanakan setiap item dalam jadual perbandingan sepanjang artikel yang lain.
Jadual 1: Perbandingan kaedah pengoptimuman hiperparameter 1 Algoritma carian grid
Carian grid mungkin super Paling mudah dan kaedah pengoptimuman parameter yang paling intuitif, yang melibatkan carian menyeluruh untuk gabungan hiperparameter terbaik dalam ruang carian yang ditentukan. "Ruang carian" dalam konteks ini ialah keseluruhan hiperparameter dan nilai hiperparameter tersebut dipertimbangkan semasa pengoptimuman. Mari kita memahami carian grid dengan lebih baik dengan contoh.
Andaikan kita mempunyai model pembelajaran mesin dengan hanya tiga parameter Setiap parameter boleh mengambil nilai yang disediakan dalam jadual:
parameter_1 = [1 , 2, 3]
parameter_2 = [a, b, c]parameter_3 = [x, y, z]
Kami tidak tahu gabungan parameter ini yang akan mengoptimumkan fungsi Pengoptimuman kami daripada model (iaitu menyediakan output terbaik untuk model pembelajaran mesin kami). Dalam carian grid, kami hanya mencuba setiap gabungan parameter ini, mengukur prestasi model untuk setiap parameter dan hanya memilih gabungan yang menghasilkan prestasi terbaik! Dalam contoh ini, parameter 1 boleh mengambil 3 nilai (iaitu 1, 2, atau 3), parameter 2 boleh mengambil 3 nilai (iaitu a, b, dan c), dan parameter 3 boleh mengambil 3 nilai (iaitu x, y, dan z). Dalam erti kata lain, terdapat 3*3*3=27 gabungan kesemuanya. Carian grid dalam contoh ini akan melibatkan 27 pusingan menilai prestasi model pembelajaran mesin untuk mencari kombinasi berprestasi terbaik.
Seperti yang anda lihat, kaedah ini sangat mudah (serupa dengan tugas percubaan dan ralat), tetapi ia juga mempunyai beberapa had. Mari kita ringkaskan kelebihan dan kekurangan kaedah ini.
Antaranya, kelebihannya termasuklah:
Mudah difahami dan dilaksanakan Mudah disejajarkan - Sesuai untuk kedua-dua diskret dan ruang berterusan Kelemahan utama ialah:
- Mahal dalam model besar dan/atau kompleks dengan bilangan hiperparameter yang besar (kerana semua kombinasi mesti dicuba dan dinilai)
- Tiada memori – tiada pembelajaran dari masa lalu Pembelajaran melalui Pemerhatian
- Jika ruang carian terlalu besar, anda mungkin tidak dapat mencari kombinasi terbaik Cadangan saya ialah jika anda mempunyai model ringkas dengan ruang carian kecil, gunakan carian grid; jika tidak, adalah disyorkan untuk meneruskan Baca untuk mencari penyelesaian yang lebih sesuai untuk ruang carian yang lebih besar. Sekarang, mari kita laksanakan carian grid menggunakan contoh sebenar.
- 1.1. Pelaksanaan algoritma carian grid
Untuk melaksanakan carian grid, kami akan menggunakan set data Iris dalam scikit-lear untuk mencipta model klasifikasi hutan rawak. Set data ini termasuk 3 kelopak iris dan panjang sepal yang berbeza dan akan digunakan untuk latihan pengelasan ini. Dalam makalah ini, pembangunan model adalah sekunder kerana matlamatnya adalah untuk membandingkan prestasi pelbagai strategi pengoptimuman hiperparameter. Saya menggalakkan anda menumpukan pada keputusan penilaian model dan masa yang diperlukan untuk setiap kaedah pengoptimuman hiperparameter untuk mencapai set hiperparameter yang dipilih. Saya akan menerangkan keputusan larian dan kemudian menyediakan jadual perbandingan ringkasan untuk tiga kaedah yang digunakan dalam artikel ini.
Ruang carian merangkumi semua nilai hiperparameter, ditakrifkan seperti berikut:
ruang_carian = {'n_estimators': [10, 100, 500, 1000],
'max_depth' : [2, 10, 25, 50, 100],'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 5, 10]}
Ruang carian di atas terdiri daripada gabungan jumlah 4*5*3*3=180 hiperparameter. Kami akan menggunakan carian grid untuk mencari gabungan yang mengoptimumkan fungsi objektif seperti berikut:
# Import perpustakaan
daripada sklearn.model_selection import GridSearchCV
daripada sklearn.datasets import load_iris
daripada sklearn.ensemble import RandomForestClassifier_model
f. masa import
# Muatkan set data Iris
iris = load_iris()
X, y = iris.data, iris.target
#Define hyperparameter search space
search_space = {'n_estimators': [10, 100, 500, 1000],
'max_depth': [2, 10, 25, 50, 100],
'min_samples_split': [2, 5, 10 ] ,
'min_samples_leaf': [1, 5, 10]}
#Define Random Forest Classifier
clf = RandomForestClassifier(random_state=1234)
#Jana objek pengoptimum
pengoptimum = GridSearchCV(clf, search_space, cv=5, scoring='acuracy')
#Simpan masa mula supaya ia boleh digunakan untuk mengira jumlah masa yang dibelanjakan
start_time = time.time()
# Pengoptimum pada pemadanan data
optimizer.fit(X, y)
# Simpan masa tamat supaya ia boleh digunakan untuk mengira jumlah masa yang memakan
end_time = time.time ( )
# Cetak set hiperparameter terbaik dan skor yang sepadan
print(f"selected hyperparameters:")
print(optimizer.best_params_)
print("")
print(f"best_score: {optimizer.best_score_}")
print(f"elapsed_time: {round(end_time-start_time, 1)}")
Output kod di atas adalah seperti berikut :
- Mudah difahami dan dilaksanakan Carian murah
- Lebih berkemungkinan menumpu kepada carian optimum daripada grid dengan bilangan percubaan yang sama Kelemahan:
- Tiada memori – tidak belajar daripada pemerhatian lepas
- Memandangkan pemilihan rawak, nilai hiperparameter penting mungkin terlepas
- Dalam kaedah seterusnya, kami akan menyelesaikan masalah grid dan "tanpa ingatan" carian rawak melalui pengoptimuman Bayesian "shortcoming. Tetapi sebelum membincangkan kaedah ini, mari kita laksanakan carian rawak.
- 2.1. Pelaksanaan algoritma carian rawak
- Menggunakan coretan kod di bawah, kami akan melaksanakan pengoptimuman hiperparameter carian rawak untuk masalah yang sama yang diterangkan dalam pelaksanaan carian grid.
dari sklearn.model_selection import RandomizedSearchCV
dari scipy.stats import randint# Buat objek RandomizedSearchCVoptimizerCV Randomized clf, param_distributinotallow=search_space,
n_iter=50, cv=5, scoring='accuracy', random_state=1234)
# Simpan masa mula untuk mengira jumlah masa berjalan
masa_mula = time.time()
# Pasangkan pengoptimum pada data
optimizer.fit(X, y)
# Simpan masa tamat untuk hitung jumlah masa Berjalan
akhir_masa = masa.masa()
# Cetak set hiperparameter optimum dan skor sepadan
cetak(f"hiperparameter terpilih:")
cetak (pengoptimum .best_params_)
print("")
print(f"best_score: {optimizer.best_score_}")
print(f"elapsed_time: {round(end_time-start_time, 1) }" )
Hasil keluaran kod di atas adalah seperti berikut:
Hasil carian rawak
Berbanding dengan hasil carian grid, Keputusan ini sangat menarik. best_score kekal sama, tetapi elapsed_time berkurangan daripada 352.0 saat kepada 75.5 saat! Sungguh mengagumkan! Dalam erti kata lain, algoritma carian rawak berjaya mencari satu set hiperparameter yang berfungsi sama seperti carian grid dalam kira-kira 21% masa yang diperlukan oleh carian grid! Walau bagaimanapun, kecekapan di sini jauh lebih tinggi.
Seterusnya, mari kita beralih kepada kaedah seterusnya, yang dipanggil Pengoptimuman Bayesian, yang belajar daripada setiap percubaan dalam proses pengoptimuman.
3. Pengoptimuman Bayesian
Pengoptimuman Bayesian ialah kaedah pengoptimuman hiperparameter yang menggunakan model kebarangkalian untuk "belajar" daripada percubaan sebelumnya dan mengarahkan carian ke hiperparameter dalam ruang carian fungsi objektif model pembelajaran mesin.
Kaedah pengoptimuman Bayesian boleh dibahagikan kepada 4 langkah, yang akan saya huraikan di bawah. Saya menggalakkan anda membaca langkah-langkah ini untuk memahami proses ini dengan lebih baik, tetapi tiada pengetahuan prasyarat diperlukan untuk menggunakan kaedah ini.
- Tentukan "sebelumnya", yang merupakan model kebarangkalian
- penilaian kepercayaan kita tentang gabungan hiperparameter yang paling mungkin untuk mengoptimumkan fungsi objektif pada satu ketika Model masa Sampel Hiperparameter
- Menggunakan pengetahuan yang diperoleh dalam Langkah 2, kemas kini model kebarangkalian dalam Langkah 1 (yang kami panggil "sebelumnya") untuk memahami hiperparameter terbaik yang kami percaya mengoptimumkan fungsi objektif . Kepercayaan kami yang dikemas kini dipanggil "posterior". Dalam erti kata lain, pengetahuan yang diperoleh dalam langkah 2 membantu kami memahami ruang carian dengan lebih baik dan membawa kami dari sebelum ke posterior, menjadikan posterior pengetahuan "terkini" kami tentang ruang carian dan fungsi objektif, seperti yang ditentukan oleh langkah 2 Sediakan maklumat
- Ulang langkah 2 dan 3 sehingga prestasi model menumpu, sumber habis atau metrik pratakrif lain dipenuhi
Jika anda berminat untuk mengetahui lebih lanjut tentang Baye Untuk maklumat terperinci tentang Si pengoptimuman, anda boleh melihat siaran berikut:
"Algoritma Pengoptimuman Bayesian dalam Pembelajaran Mesin", alamatnya ialah:
https://medium.com/@fmnobar/conceptual -overview-of -pengoptimuman-bayesian-untuk-penalaan-parameter-dalam-pembelajaran-mesin-a3b1b4b9339f.
Sekarang kita memahami cara pengoptimuman Bayesian berfungsi, mari kita lihat kelebihan dan kekurangannya.
Kelebihan:
- Belajar daripada pemerhatian lepas dan oleh itu lebih cekap. Dalam erti kata lain, berbanding kaedah tanpa ingatan, ia dijangka mencari set hiperparameter yang lebih baik dalam lelaran yang lebih sedikit
- yang menumpu kepada andaian tertentu yang optimum:
- Sukar untuk disejajarkan.
- Secara pengiraan lebih besar daripada grid dan carian rawak setiap lelaran
- Sebelumnya dan fungsi yang digunakan dalam pengoptimuman Bayesian (cth., Pilihan taburan kebarangkalian awal untuk fungsi pemerolehan, dsb.) boleh menjejaskan dengan ketara prestasi dan keluk pembelajarannya
Dengan perincian yang tidak diingini, mari kita laksanakan pengoptimuman Bayesian dan lihat hasilnya.
3.1. Pelaksanaan Algoritma Pengoptimuman Bayesian
Sama seperti bahagian sebelumnya, kami akan menggunakan coretan kod berikut untuk melaksanakan hiperparameter Bayesian untuk masalah yang sama yang diterangkan dalam pengoptimuman Pelaksanaan Carian Grid.
# Import perpustakaan
dari skopt import BayesSearchCV
# Lakukan pengoptimuman Bayesian
pengoptimum = BayesSearchCV(estimator=RandomForestClassifier(),_spacessearch =>search n_iter=10,
cv=5,
scoring='accuracy',
random_state=1234)
# Simpan masa mula untuk mengira Jumlah masa berjalan
masa_mula = time.time()
optimizer.fit(X, y)
# Simpan masa tamat untuk mengira jumlah masa berjalan
masa tamat = time.time()
# Cetak set hiperparameter terbaik dan skor yang sepadan
print(f"selected hyperparameters:")
print(optimizer.best_params_)
print ("")
print(f"best_score: {optimizer.best_score_}")
print(f"elapsed_time: {round(end_time-start_time, 1)}")
Output kod di atas adalah seperti berikut:
Perbandingan Keputusan
Jadual di bawah membandingkan keputusan tiga kaedah yang dibincangkan setakat ini. Lajur "Metodologi" menerangkan kaedah pengoptimuman hiperparameter yang digunakan. Ini diikuti oleh hiperparameter yang dipilih menggunakan setiap kaedah. "Skor Terbaik" ialah skor yang diperoleh menggunakan kaedah tertentu, dan kemudian "Masa Berlalu" mewakili tempoh masa yang diambil untuk strategi pengoptimuman dijalankan pada komputer riba tempatan saya. Lajur terakhir, Kecekapan Diperolehi, menganggap carian grid sebagai garis dasar dan kemudian mengira kecekapan yang diperoleh oleh setiap satu daripada dua kaedah lain berbanding carian grid (menggunakan masa berlalu). Sebagai contoh, memandangkan carian rawak mengambil masa 75.5 saat dan carian grid mengambil masa 352.0 saat, kecekapan carian rawak berbanding garis dasar carian grid dikira sebagai 1–75.5/352.0=78.5%.
Jadual 2 - Jadual perbandingan prestasi kaedah
Dua kesimpulan utama dalam jadual perbandingan di atas:
- Kecekapan : Kita boleh melihat bagaimana kaedah pembelajaran seperti pengoptimuman Bayesian boleh mencari set hiperparameter yang dioptimumkan dalam masa yang singkat.
- Pemilihan parameter: Terdapat berbilang jawapan yang betul. Sebagai contoh, parameter yang dipilih untuk pengoptimuman Bayesian adalah berbeza daripada parameter untuk grid dan carian rawak, walaupun metrik penilaian (iaitu best_score) kekal sama. Ini lebih penting lagi dalam persekitaran yang lebih besar dan lebih kompleks.
Kesimpulan
Dalam artikel ini, kami membincangkan apa itu pengoptimuman hiperparameter dan memperkenalkan tiga kaedah paling biasa digunakan untuk latihan pengoptimuman ini. Kami kemudian memperkenalkan setiap tiga kaedah ini secara terperinci dan melaksanakannya dalam latihan pengelasan. Akhir sekali, kami membandingkan hasil pelaksanaan ketiga-tiga kaedah tersebut. Kami mendapati bahawa kaedah seperti pengoptimuman Bayesian yang dipelajari daripada percubaan sebelumnya boleh meningkatkan kecekapan dengan ketara, yang boleh menjadi faktor penting dalam model kompleks besar seperti rangkaian saraf dalam, di mana kecekapan boleh menjadi faktor penentu.
Pengenalan penterjemah
Zhu Xianzhong, editor komuniti 51CTO, blogger pakar 51CTO, pensyarah, guru komputer di sebuah universiti di Weifang dan seorang veteran dalam industri pengaturcaraan bebas.
Tajuk asal: Pengoptimuman Hiperparameter — Pengenalan dan Pelaksanaan Carian Grid, Carian Rawak dan Pengoptimuman Bayesian, pengarang: Farzad Mahmoodinobar
Atas ialah kandungan terperinci Perbandingan pengoptimuman hiperparameter: carian grid, carian rawak dan pengoptimuman Bayesian. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas





Laman web ini melaporkan pada 27 Jun bahawa Jianying ialah perisian penyuntingan video yang dibangunkan oleh FaceMeng Technology, anak syarikat ByteDance Ia bergantung pada platform Douyin dan pada asasnya menghasilkan kandungan video pendek untuk pengguna platform tersebut Windows , MacOS dan sistem pengendalian lain. Jianying secara rasmi mengumumkan peningkatan sistem keahliannya dan melancarkan SVIP baharu, yang merangkumi pelbagai teknologi hitam AI, seperti terjemahan pintar, penonjolan pintar, pembungkusan pintar, sintesis manusia digital, dsb. Dari segi harga, yuran bulanan untuk keratan SVIP ialah 79 yuan, yuran tahunan ialah 599 yuan (nota di laman web ini: bersamaan dengan 49.9 yuan sebulan), langganan bulanan berterusan ialah 59 yuan sebulan, dan langganan tahunan berterusan ialah 499 yuan setahun (bersamaan dengan 41.6 yuan sebulan) . Di samping itu, pegawai yang dipotong juga menyatakan bahawa untuk meningkatkan pengalaman pengguna, mereka yang telah melanggan VIP asal

Tingkatkan produktiviti, kecekapan dan ketepatan pembangun dengan menggabungkan penjanaan dipertingkatkan semula dan memori semantik ke dalam pembantu pengekodan AI. Diterjemah daripada EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, pengarang JanakiramMSV. Walaupun pembantu pengaturcaraan AI asas secara semulajadi membantu, mereka sering gagal memberikan cadangan kod yang paling relevan dan betul kerana mereka bergantung pada pemahaman umum bahasa perisian dan corak penulisan perisian yang paling biasa. Kod yang dijana oleh pembantu pengekodan ini sesuai untuk menyelesaikan masalah yang mereka bertanggungjawab untuk menyelesaikannya, tetapi selalunya tidak mematuhi piawaian pengekodan, konvensyen dan gaya pasukan individu. Ini selalunya menghasilkan cadangan yang perlu diubah suai atau diperhalusi agar kod itu diterima ke dalam aplikasi

Model Bahasa Besar (LLM) dilatih pada pangkalan data teks yang besar, di mana mereka memperoleh sejumlah besar pengetahuan dunia sebenar. Pengetahuan ini dibenamkan ke dalam parameter mereka dan kemudiannya boleh digunakan apabila diperlukan. Pengetahuan tentang model ini "diperbaharui" pada akhir latihan. Pada akhir pra-latihan, model sebenarnya berhenti belajar. Selaraskan atau perhalusi model untuk mempelajari cara memanfaatkan pengetahuan ini dan bertindak balas dengan lebih semula jadi kepada soalan pengguna. Tetapi kadangkala pengetahuan model tidak mencukupi, dan walaupun model boleh mengakses kandungan luaran melalui RAG, ia dianggap berfaedah untuk menyesuaikan model kepada domain baharu melalui penalaan halus. Penalaan halus ini dilakukan menggunakan input daripada anotasi manusia atau ciptaan LLM lain, di mana model menemui pengetahuan dunia sebenar tambahan dan menyepadukannya

Untuk mengetahui lebih lanjut tentang AIGC, sila layari: 51CTOAI.x Komuniti https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou berbeza daripada bank soalan tradisional yang boleh dilihat di mana-mana sahaja di Internet memerlukan pemikiran di luar kotak. Model Bahasa Besar (LLM) semakin penting dalam bidang sains data, kecerdasan buatan generatif (GenAI) dan kecerdasan buatan. Algoritma kompleks ini meningkatkan kemahiran manusia dan memacu kecekapan dan inovasi dalam banyak industri, menjadi kunci kepada syarikat untuk kekal berdaya saing. LLM mempunyai pelbagai aplikasi Ia boleh digunakan dalam bidang seperti pemprosesan bahasa semula jadi, penjanaan teks, pengecaman pertuturan dan sistem pengesyoran. Dengan belajar daripada sejumlah besar data, LLM dapat menjana teks

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

Menurut berita dari laman web ini pada 1 Ogos, SK Hynix mengeluarkan catatan blog hari ini (1 Ogos), mengumumkan bahawa ia akan menghadiri Global Semiconductor Memory Summit FMS2024 yang akan diadakan di Santa Clara, California, Amerika Syarikat dari 6 hingga 8 Ogos, mempamerkan banyak produk penjanaan teknologi baru. Pengenalan kepada Sidang Kemuncak Memori dan Penyimpanan Masa Depan (FutureMemoryandStorage), dahulunya Sidang Kemuncak Memori Flash (FlashMemorySummit) terutamanya untuk pembekal NAND, dalam konteks peningkatan perhatian kepada teknologi kecerdasan buatan, tahun ini dinamakan semula sebagai Sidang Kemuncak Memori dan Penyimpanan Masa Depan (FutureMemoryandStorage) kepada jemput vendor DRAM dan storan serta ramai lagi pemain. Produk baharu SK hynix dilancarkan tahun lepas

Editor |. KX Dalam bidang penyelidikan dan pembangunan ubat, meramalkan pertalian pengikatan protein dan ligan dengan tepat dan berkesan adalah penting untuk pemeriksaan dan pengoptimuman ubat. Walau bagaimanapun, kajian semasa tidak mengambil kira peranan penting maklumat permukaan molekul dalam interaksi protein-ligan. Berdasarkan ini, penyelidik dari Universiti Xiamen mencadangkan rangka kerja pengekstrakan ciri berbilang mod (MFE) novel, yang buat pertama kalinya menggabungkan maklumat mengenai permukaan protein, struktur dan jujukan 3D, dan menggunakan mekanisme perhatian silang untuk membandingkan ciri modaliti yang berbeza penjajaran. Keputusan eksperimen menunjukkan bahawa kaedah ini mencapai prestasi terkini dalam meramalkan pertalian mengikat protein-ligan. Tambahan pula, kajian ablasi menunjukkan keberkesanan dan keperluan maklumat permukaan protein dan penjajaran ciri multimodal dalam rangka kerja ini. Penyelidikan berkaitan bermula dengan "S
