Jadual Kandungan
Ringkasan
Pengenalan
Pemasangan modul LazyPredict
Melaksanakan LazyPredict dalam model klasifikasi
Melaksanakan LazyPredict dalam model regresi
结论
译者介绍
Rumah Peranti teknologi AI LazyPredict: Pilih model ML terbaik untuk anda!

LazyPredict: Pilih model ML terbaik untuk anda!

Apr 06, 2023 pm 08:45 PM
pembelajaran mesin lazypredic model ml

Artikel ini membincangkan menggunakan LazyPredict untuk mencipta model ML mudah. Ciri penciptaan model pembelajaran mesin LazyPredict ialah ia tidak memerlukan banyak kod, dan pada masa yang sama, ia boleh memuatkan berbilang model tanpa mengubah suai parameter, dengan itu memilih model berprestasi terbaik antara banyak model.

Ringkasan

Artikel ini membincangkan menggunakan LazyPredict untuk mencipta model ML mudah. Ciri penciptaan model pembelajaran mesin LazyPredict ialah ia tidak memerlukan banyak kod dan boleh melakukan pemasangan berbilang model tanpa mengubah suai parameter, dengan itu memilih model berprestasi terbaik di antara banyak model.

LazyPredict: Pilih model ML terbaik untuk anda!

Artikel ini termasuk kandungan berikut:

  • Pengenalan
  • Pemasangan modul LazyPredict
  • Dalam model klasifikasi Melaksanakan LazyPredict dalam model regresi
  • Melaksanakan dalam model regresi
  • Ringkasan

Pengenalan

LazyPredict dikenali sebagai pakej perisian Python paling maju , dan kelahirannya ialah Revolusikan cara model pembelajaran mesin dibangunkan. Dengan menggunakan LazyPredict, pelbagai model asas boleh dibuat dengan cepat tanpa pengekodan, membebaskan masa untuk memilih model yang paling sesuai dengan data kami.

Kelebihan utama LazyPredict ialah ia menjadikan pemilihan model lebih mudah tanpa memerlukan penalaan parameter model yang meluas. LazyPredict menyediakan cara yang pantas dan cekap untuk mencari dan menyesuaikan model terbaik dengan data anda.

Seterusnya, mari kita teroka dan ketahui lebih lanjut tentang penggunaan LazyPredict melalui artikel ini.

Pemasangan modul LazyPredict

Pemasangan perpustakaan LazyPredict ialah tugas yang sangat mudah. Sama seperti memasang mana-mana perpustakaan Python lain, ia semudah satu baris kod.

!pip install lazypredict
Salin selepas log masuk

Melaksanakan LazyPredict dalam model klasifikasi

Dalam contoh ini kita akan menggunakan set data kanser payudara daripada pakej Sklearn.

Sekarang, mari muatkan data.

from sklearn.datasets import load_breast_cancer
from lazypredict.Supervised import LazyClassifier

data = load_breast_cancer()
X = data.data
y= data.target
Salin selepas log masuk

Untuk memilih model pengelas terbaik, mari kita gunakan algoritma "LazyClassifier". Ciri-ciri dan parameter input ini sesuai untuk kelas ini.

LazyClassifier(
verbose=0,
ignore_warnings=True,
custom_metric=None,
predictions=False,
random_state=42,
classifiers='all',
)
Salin selepas log masuk

Kemudian gunakan model pada data yang dimuatkan dan muatkannya.

from lazypredict.Supervised import LazyClassifier
from sklearn.model_selection import train_test_split

# split the data
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.3,random_state =0)

# build the lazyclassifier
clf = LazyClassifier(verbose=0,ignore_warnings=True, custom_metric=None)

# fit it
models, predictions = clf.fit(X_train, X_test, y_train, y_test)

# print the best models
print(models)
Salin selepas log masuk

Selepas melaksanakan kod di atas, keputusan berikut diperoleh:


LazyPredict: Pilih model ML terbaik untuk anda!


LazyPredict: Pilih model ML terbaik untuk anda!

Kemudian, kita boleh melakukan perkara berikut untuk melihat butiran model.

model_dictionary = clf.provide_models(X_train,X_test,y_train,y_test)
Salin selepas log masuk

Seterusnya, tetapkan nama model untuk memaparkan maklumat langkah terperinci.

model_dictionary['LGBMClassifier']
Salin selepas log masuk


LazyPredict: Pilih model ML terbaik untuk anda!

Di sini kita dapat melihat bahawa SimpleImputer digunakan untuk keseluruhan set data dan kemudian StandardScaler digunakan untuk ciri berangka. Tiada ciri kategori atau ordinal dalam set data ini, tetapi jika ada, OneHotEncoder dan OrdinalEncoder akan digunakan masing-masing. Model LGBMClassifier menerima data selepas transformasi dan pengelasan.

Model pembelajaran mesin dalaman LazyClassifier menggunakan kotak alat sci-kit-learn untuk penilaian dan pemasangan. Apabila fungsi LazyClassifier dipanggil, ia akan membina dan memuatkan pelbagai model secara automatik pada data kami, termasuk pepohon keputusan, hutan rawak, mesin vektor sokongan, dsb. Satu set metrik prestasi yang anda berikan, seperti ketepatan, ingat semula atau skor F1, digunakan untuk menilai model ini. Set latihan digunakan untuk pemasangan, manakala set ujian digunakan untuk penilaian.

Selepas menilai dan menyesuaikan model, LazyClassifier akan menyediakan ringkasan keputusan penilaian (seperti yang ditunjukkan dalam jadual di atas), serta senarai model teratas dan metrik prestasi untuk setiap model. Memandangkan tidak perlu menala atau memilih model secara manual, anda boleh menilai prestasi banyak model dengan cepat dan mudah serta memilih model yang paling sesuai dengan data anda.

Melaksanakan LazyPredict dalam model regresi

Menggunakan fungsi "LazyRegressor", kerja yang sama boleh dilakukan semula untuk model regresi. Mari import set data yang sesuai untuk tugas regresi (menggunakan set data Boston).

Sekarang, mari gunakan LazyRegressor untuk memuatkan data kami.

from lazypredict.Supervised import LazyRegressor
from sklearn import datasets
from sklearn.utils import shuffle
import numpy as np

# load the data
boston = datasets.load_boston()
X, y = shuffle(boston.data, boston.target, random_state=0)
X = X.astype(np.float32)

# split the data
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.3,random_state =0)

# fit the lazy object
reg = LazyRegressor(verbose=0, ignore_warnings=False, custom_metric=None)
models, predictions = reg.fit(X_train, X_test, y_train, y_test)

# print the results in a table
print(models)
Salin selepas log masuk

Hasil pelaksanaan kod adalah seperti berikut:


LazyPredict: Pilih model ML terbaik untuk anda!

以下是对最佳回归模型的详细描述:

model_dictionary = reg.provide_models(X_train,X_test,y_train,y_test)
model_dictionary['ExtraTreesRegressor']
Salin selepas log masuk


LazyPredict: Pilih model ML terbaik untuk anda!

这里可以看到SimpleImputer被用于整个数据集,然后是StandardScaler用于数字特征。这个数据集中没有分类或序数特征,但如果有的话,会分别使用OneHotEncoder和OrdinalEncoder。ExtraTreesRegressor模型接收了转换和归类后的数据。

结论

LazyPredict库对于任何从事机器学习行业的人来说都是一种有用的资源。LazyPredict通过自动创建和评估模型的过程来节省选择模型的时间和精力,这大大提高了模型选择过程的有效性。LazyPredict提供了一种快速而简单的方法来比较几个模型的有效性,并确定哪个模型系列最适合我们的数据和问题,因为它能够同时拟合和评估众多模型。

阅读本文之后希望你现在对LazyPredict库有了直观的了解,这些概念将帮助你建立一些真正有价值的项目。

译者介绍

崔皓,51CTO社区编辑,资深架构师,拥有18年的软件开发和架构经验,10年分布式架构经验。

原文标题:LazyPredict: A Utilitarian Python Library to Shortlist the Best ML Models for a Given Use Case,作者:Sanjay Kumar

Atas ialah kandungan terperinci LazyPredict: Pilih model ML terbaik untuk anda!. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Arahan sembang dan cara menggunakannya
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

15 alat anotasi imej percuma sumber terbuka disyorkan 15 alat anotasi imej percuma sumber terbuka disyorkan Mar 28, 2024 pm 01:21 PM

Anotasi imej ialah proses mengaitkan label atau maklumat deskriptif dengan imej untuk memberi makna dan penjelasan yang lebih mendalam kepada kandungan imej. Proses ini penting untuk pembelajaran mesin, yang membantu melatih model penglihatan untuk mengenal pasti elemen individu dalam imej dengan lebih tepat. Dengan menambahkan anotasi pada imej, komputer boleh memahami semantik dan konteks di sebalik imej, dengan itu meningkatkan keupayaan untuk memahami dan menganalisis kandungan imej. Anotasi imej mempunyai pelbagai aplikasi, meliputi banyak bidang, seperti penglihatan komputer, pemprosesan bahasa semula jadi dan model penglihatan graf Ia mempunyai pelbagai aplikasi, seperti membantu kenderaan dalam mengenal pasti halangan di jalan raya, dan membantu dalam proses. pengesanan dan diagnosis penyakit melalui pengecaman imej perubatan. Artikel ini terutamanya mengesyorkan beberapa alat anotasi imej sumber terbuka dan percuma yang lebih baik. 1.Makesen

Artikel ini akan membawa anda memahami SHAP: penjelasan model untuk pembelajaran mesin Artikel ini akan membawa anda memahami SHAP: penjelasan model untuk pembelajaran mesin Jun 01, 2024 am 10:58 AM

Dalam bidang pembelajaran mesin dan sains data, kebolehtafsiran model sentiasa menjadi tumpuan penyelidik dan pengamal. Dengan aplikasi meluas model yang kompleks seperti kaedah pembelajaran mendalam dan ensemble, memahami proses membuat keputusan model menjadi sangat penting. AI|XAI yang boleh dijelaskan membantu membina kepercayaan dan keyakinan dalam model pembelajaran mesin dengan meningkatkan ketelusan model. Meningkatkan ketelusan model boleh dicapai melalui kaedah seperti penggunaan meluas pelbagai model yang kompleks, serta proses membuat keputusan yang digunakan untuk menerangkan model. Kaedah ini termasuk analisis kepentingan ciri, anggaran selang ramalan model, algoritma kebolehtafsiran tempatan, dsb. Analisis kepentingan ciri boleh menerangkan proses membuat keputusan model dengan menilai tahap pengaruh model ke atas ciri input. Anggaran selang ramalan model

Kenal pasti overfitting dan underfitting melalui lengkung pembelajaran Kenal pasti overfitting dan underfitting melalui lengkung pembelajaran Apr 29, 2024 pm 06:50 PM

Artikel ini akan memperkenalkan cara mengenal pasti pemasangan lampau dan kekurangan dalam model pembelajaran mesin secara berkesan melalui keluk pembelajaran. Underfitting dan overfitting 1. Overfitting Jika model terlampau latihan pada data sehingga ia mempelajari bunyi daripadanya, maka model tersebut dikatakan overfitting. Model yang dipasang terlebih dahulu mempelajari setiap contoh dengan sempurna sehingga ia akan salah mengklasifikasikan contoh yang tidak kelihatan/baharu. Untuk model terlampau, kami akan mendapat skor set latihan yang sempurna/hampir sempurna dan set pengesahan/skor ujian yang teruk. Diubah suai sedikit: "Punca overfitting: Gunakan model yang kompleks untuk menyelesaikan masalah mudah dan mengekstrak bunyi daripada data. Kerana set data kecil sebagai set latihan mungkin tidak mewakili perwakilan yang betul bagi semua data. 2. Underfitting Heru

Telus! Analisis mendalam tentang prinsip model pembelajaran mesin utama! Telus! Analisis mendalam tentang prinsip model pembelajaran mesin utama! Apr 12, 2024 pm 05:55 PM

Dalam istilah orang awam, model pembelajaran mesin ialah fungsi matematik yang memetakan data input kepada output yang diramalkan. Secara lebih khusus, model pembelajaran mesin ialah fungsi matematik yang melaraskan parameter model dengan belajar daripada data latihan untuk meminimumkan ralat antara output yang diramalkan dan label sebenar. Terdapat banyak model dalam pembelajaran mesin, seperti model regresi logistik, model pepohon keputusan, model mesin vektor sokongan, dll. Setiap model mempunyai jenis data dan jenis masalah yang berkenaan. Pada masa yang sama, terdapat banyak persamaan antara model yang berbeza, atau terdapat laluan tersembunyi untuk evolusi model. Mengambil perceptron penyambung sebagai contoh, dengan meningkatkan bilangan lapisan tersembunyi perceptron, kita boleh mengubahnya menjadi rangkaian neural yang mendalam. Jika fungsi kernel ditambah pada perceptron, ia boleh ditukar menjadi SVM. yang ini

Evolusi kecerdasan buatan dalam penerokaan angkasa lepas dan kejuruteraan penempatan manusia Evolusi kecerdasan buatan dalam penerokaan angkasa lepas dan kejuruteraan penempatan manusia Apr 29, 2024 pm 03:25 PM

Pada tahun 1950-an, kecerdasan buatan (AI) dilahirkan. Ketika itulah penyelidik mendapati bahawa mesin boleh melakukan tugas seperti manusia, seperti berfikir. Kemudian, pada tahun 1960-an, Jabatan Pertahanan A.S. membiayai kecerdasan buatan dan menubuhkan makmal untuk pembangunan selanjutnya. Penyelidik sedang mencari aplikasi untuk kecerdasan buatan dalam banyak bidang, seperti penerokaan angkasa lepas dan kelangsungan hidup dalam persekitaran yang melampau. Penerokaan angkasa lepas ialah kajian tentang alam semesta, yang meliputi seluruh alam semesta di luar bumi. Angkasa lepas diklasifikasikan sebagai persekitaran yang melampau kerana keadaannya berbeza daripada di Bumi. Untuk terus hidup di angkasa, banyak faktor mesti dipertimbangkan dan langkah berjaga-jaga mesti diambil. Para saintis dan penyelidik percaya bahawa meneroka ruang dan memahami keadaan semasa segala-galanya boleh membantu memahami cara alam semesta berfungsi dan bersedia untuk menghadapi kemungkinan krisis alam sekitar

Melaksanakan Algoritma Pembelajaran Mesin dalam C++: Cabaran dan Penyelesaian Biasa Melaksanakan Algoritma Pembelajaran Mesin dalam C++: Cabaran dan Penyelesaian Biasa Jun 03, 2024 pm 01:25 PM

Cabaran biasa yang dihadapi oleh algoritma pembelajaran mesin dalam C++ termasuk pengurusan memori, multi-threading, pengoptimuman prestasi dan kebolehselenggaraan. Penyelesaian termasuk menggunakan penunjuk pintar, perpustakaan benang moden, arahan SIMD dan perpustakaan pihak ketiga, serta mengikuti garis panduan gaya pengekodan dan menggunakan alat automasi. Kes praktikal menunjukkan cara menggunakan perpustakaan Eigen untuk melaksanakan algoritma regresi linear, mengurus memori dengan berkesan dan menggunakan operasi matriks berprestasi tinggi.

AI yang boleh dijelaskan: Menerangkan model AI/ML yang kompleks AI yang boleh dijelaskan: Menerangkan model AI/ML yang kompleks Jun 03, 2024 pm 10:08 PM

Penterjemah |. Disemak oleh Li Rui |. Chonglou Model kecerdasan buatan (AI) dan pembelajaran mesin (ML) semakin kompleks hari ini, dan output yang dihasilkan oleh model ini adalah kotak hitam – tidak dapat dijelaskan kepada pihak berkepentingan. AI Boleh Dijelaskan (XAI) bertujuan untuk menyelesaikan masalah ini dengan membolehkan pihak berkepentingan memahami cara model ini berfungsi, memastikan mereka memahami cara model ini sebenarnya membuat keputusan, dan memastikan ketelusan dalam sistem AI, Amanah dan akauntabiliti untuk menyelesaikan masalah ini. Artikel ini meneroka pelbagai teknik kecerdasan buatan (XAI) yang boleh dijelaskan untuk menggambarkan prinsip asasnya. Beberapa sebab mengapa AI boleh dijelaskan adalah penting Kepercayaan dan ketelusan: Untuk sistem AI diterima secara meluas dan dipercayai, pengguna perlu memahami cara keputusan dibuat

Lima sekolah pembelajaran mesin yang anda tidak tahu Lima sekolah pembelajaran mesin yang anda tidak tahu Jun 05, 2024 pm 08:51 PM

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

See all articles